www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - zero bond, debt etc.
zero bond, debt etc. < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zero bond, debt etc.: Tipp , Idee
Status: (Frage) beantwortet Status 
Datum: 16:07 Sa 15.11.2014
Autor: mathegenie_90

Aufgabe
You are working in the treasury department of major firm, that is planning to issue debt. For a two-year zero bond without any options attached a credit spread of 4,16% has to be promised. The risk-free rate is 3%.

a) Calculate the current zero bond price and the price of the option to default.

b) Assume a loss given default of 60%, what is the implied risk-neutral probability of default if the bond can only default at maturity of the bond?

c) A colleague suggests to attach a conversation right to the zero bond. You find out that the current market price of an equivalent option is 5. The colleague argues:" The convertible bond is a cheaper source of financing, because we get 5 more per bond.Therefore it is always better to issue a convertible bond instead of straight debt ( debt without options)."Is Your colleague right?

Hallo liebe Forumfreunde,

leider komme ich bei obiger Aufgabe nicht weiter, daher bitte ich euch um eureo tatkräftige Unterstützung:

zu a) habe ich folgenden Ansatz:

zero bond price:
100/(1+0,03+0,0416)=87,08

price of the option to default: habe ich leider keinen Ansatz

zu b) und c) leider auch nicht.

Würde mich sehr über jede Hilfe freuen.

VG
Danyal

        
Bezug
zero bond, debt etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:51 So 16.11.2014
Autor: Staffan

Hallo,

zu a)

Der zero bond price stimmt im Ergebnis richtig, allerdings muß die Rechnung lauten:

$ [mm] \bruch{100}{1,0716^2}=87,08 [/mm] $.
Mein erster Ansatz für die Ermittlung des price of the option to default wäre die Differenz dieses Preises zu dem eines zero bonds, dem die risk free rate zugrunde liegt, weil die geringere Bonität damit bezahlt wird.

zu b) Das sollte sich aus dem Verhältnis des credit spreads zu dem loss given default ergeben.

zu c) Ein "conservation right" kenne ich nicht, wohl aber ein "conversion right", das es üblicherweise bei einem convertible bond (Wandelanleihe) gibt. Die Rückzahlung bei einem solchen Bond erfolgt nicht in Geld, sondern durch die Ausgabe von Aktien, die sich das Unternehmen erst über (meist) eine bedingte Kapitalerhöhung beschaffen muß, deren Preis heute noch nicht bekannt ist, da er nicht unbedingt der Höhe des Bonds entsprechen muß; damit geht außerdem in Zukunft als weitere Belastung immer in der Summe eine höhere Dividende einher, so daß die Behauptung nach meiner Auffassung pauschal nicht richtig ist.

Gruß
Staffan

Bezug
                
Bezug
zero bond, debt etc.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 10:19 Mo 17.11.2014
Autor: mathegenie_90

Hallo, vorab einmal vielen Dank für die Hilfe.

> Hallo,
>  
> zu a)
>  
> Der zero bond price stimmt im Ergebnis richtig, allerdings
> muß die Rechnung lauten:
>  
> [mm]\bruch{100}{1,0716^2}=87,08 [/mm].

stimmt, danke für die Korrektur.

>  Mein erster Ansatz für die
> Ermittlung des price of the option to default wäre die
> Differenz dieses Preises zu dem eines zero bonds, dem die
> risk free rate zugrunde liegt, weil die geringere Bonität
> damit bezahlt wird.

Hier also : [mm] 100/1,03^{2}=94,26 [/mm]
dann wäre der price of the option to default: 94,26-87,08=7,18 ?
ist das so richtig?

>  
> zu b) Das sollte sich aus dem Verhältnis des credit
> spreads zu dem loss given default ergeben.

Hier verstehe ich leider nicht, was Du genau meinst bzw wie ich vorgehen soll...?

Vielen Dank im Voraus.

VG
Danyal

>  
> zu c) Ein "conservation right" kenne ich nicht, wohl aber
> ein "conversion right", das es üblicherweise bei einem
> convertible bond (Wandelanleihe) gibt. Die Rückzahlung bei
> einem solchen Bond erfolgt nicht in Geld, sondern durch die
> Ausgabe von Aktien, die sich das Unternehmen erst über
> (meist) eine bedingte Kapitalerhöhung beschaffen muß,
> deren Preis heute noch nicht bekannt ist, da er nicht
> unbedingt der Höhe des Bonds entsprechen muß; damit geht
> außerdem in Zukunft als weitere Belastung immer in der
> Summe eine höhere Dividende einher, so daß die Behauptung
> nach meiner Auffassung pauschal nicht richtig ist.

ja gemeint ist auch conversion right, hab mich wohl stark vertippt...Danke für die Erklärung


Bezug
                        
Bezug
zero bond, debt etc.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Mo 17.11.2014
Autor: Staffan

Hallo,

> Hallo, vorab einmal vielen Dank für die Hilfe.
>  
> > Hallo,
>  >  
> > zu a)
>  >  
> > Der zero bond price stimmt im Ergebnis richtig, allerdings
> > muß die Rechnung lauten:
>  >  
> > [mm]\bruch{100}{1,0716^2}=87,08 [/mm].
>  
> stimmt, danke für die Korrektur.
>  >  Mein erster Ansatz für die
> > Ermittlung des price of the option to default wäre die
> > Differenz dieses Preises zu dem eines zero bonds, dem die
> > risk free rate zugrunde liegt, weil die geringere Bonität
> > damit bezahlt wird.
>  
> Hier also : [mm]100/1,03^{2}=94,26[/mm]
>  dann wäre der price of the option to default:
> 94,26-87,08=7,18 ?
>  ist das so richtig?

ja, so ist das gemeint. Falls eine andere Lösung vorgegeben sein sollte, würde ich die gerne wissen, weil es möglicherweise auch noch eine andere Berechnungart gibt.

>  >  
> > zu b) Das sollte sich aus dem Verhältnis des credit
> > spreads zu dem loss given default ergeben.
>  
> Hier verstehe ich leider nicht, was Du genau meinst bzw wie
> ich vorgehen soll...?
>  
> Vielen Dank im Voraus.
>

Bezeichne ich die risk-neutral probability mit [mm] $\lambda$, [/mm] heißt das, was ich verbal beschrieben habe, rechnerisch

$ [mm] \lambda=\bruch{0,0416}{0,6} [/mm] $

> VG
>  Danyal
>  
> >  

> > zu c) Ein "conservation right" kenne ich nicht, wohl aber
> > ein "conversion right", das es üblicherweise bei einem
> > convertible bond (Wandelanleihe) gibt. Die Rückzahlung bei
> > einem solchen Bond erfolgt nicht in Geld, sondern durch die
> > Ausgabe von Aktien, die sich das Unternehmen erst über
> > (meist) eine bedingte Kapitalerhöhung beschaffen muß,
> > deren Preis heute noch nicht bekannt ist, da er nicht
> > unbedingt der Höhe des Bonds entsprechen muß; damit geht
> > außerdem in Zukunft als weitere Belastung immer in der
> > Summe eine höhere Dividende einher, so daß die Behauptung
> > nach meiner Auffassung pauschal nicht richtig ist.
>  
> ja gemeint ist auch conversion right, hab mich wohl stark
> vertippt...Danke für die Erklärung
>  

Gruß
Staffan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de