zweidimensionale Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:52 Di 22.10.2013 | Autor: | xsuernx |
Aufgabe 1 | Berechnen Sie den Flächeninhalt [mm] $\phi(A)$ [/mm] über dem zweidimensionalen Integrationsbereich
[mm] §A:=\left[ 0,5 \right]\times \left[ 1,6 \right]=\left\{ \left( x,y \right)|0\le x\le 5,1\le y \le 6 \right\}\subseteq \IR^2 [/mm] . |
Aufgabe 2 | Berechnen Sie das Integral der Funktion $f(x,y):a [mm] \rightarrow \IR$ [/mm] über dem Integrationsbereich A:
[mm] $f(x,y)=x^3+\bruch{1}{3}y [/mm] , [mm] A=\left[ 0,1 \right]\times \left[ 1,3 \right] [/mm] |
Hallo, als Ansatz habe ich einen Satz gefunden, mit dem es gehen sollte:
" Es sei die Funktion [mm] $f:\left[ a,b \right]\times \left[ c,d \right]=\left \rightarro$ [/mm] integrierbar. Außerdem exestiere für jedes [mm] $x\in \left[a,b \right]$ [/mm] das Integral [mm] $F(x)=\int_{a}^{b} f(x,y)\, [/mm] dx$ und für jedes [mm] $y\in \left[c,d \right]$ [/mm] das Integral [mm] $G(y)=\int_{c}^{d} f(x,y)\, [/mm] dy$ dann gilt:
[mm] $\int_{\left[ a,b \right]\times \left[ c,d \right]\}^{}$ [/mm] f(x), dx [mm] $=\int_{a}^{b}\int_{c}^{d} [/mm] f(x,y),dy,dx .
aber was soll ich denn da berechnen? ich könnte es doch nur in ein doppeltes Integral umschreiben, wie es im Satz ganz unten steht oder?
Bei der zweiten Aufgabe ist es mir ja klar das ist meiner Meinung nach
[mm] $=\int_{0}^{1}\int_{1}^{3} x^3\bruch{1}{3}y [/mm] ,dy,dx$
[mm] $=\int_{1}^{3} 2x^3\bruch{4}{3}y [/mm] ,dx$
[mm] $=\bruch{11}{6}$
[/mm]
aber was zur Hölle soll man bei Aufgabe 1 tun?
Danke schnonmal
|
|
|
|
Hallo,
den Flächeninhalt über ein Gebiet A ist die Integration über die Funktion f(x,y)=1 über das Gebiet. Also:
[mm] |A|=\int_{A}1dydx
[/mm]
> Berechnen Sie den Flächeninhalt [mm]\phi(A)[/mm] über dem
> zweidimensionalen Integrationsbereich
> [mm]§A:=\left[ 0,5 \right]\times \left[ 1,6 \right]=\left\{ \left( x,y \right)|0\le x\le 5,1\le y \le 6 \right\}\subseteq \IR^2[/mm]
> .
> Berechnen Sie das Integral der Funktion [mm]f(x,y):a \rightarrow \IR[/mm]
> über dem Integrationsbereich A:
> [mm]$f(x,y)=x^3+\bruch{1}{3}y[/mm] , [mm]A=\left[ 0,1 \right]\times \left[ 1,3 \right][/mm]
>
> Hallo, als Ansatz habe ich einen Satz gefunden, mit dem es
> gehen sollte:
> " Es sei die Funktion [mm]f:\left[ a,b \right]\times \left[ c,d \right]=\left \rightarro[/mm]
> integrierbar. Außerdem exestiere für jedes [mm]x\in \left[a,b \right][/mm]
> das Integral [mm]F(x)=\int_{a}^{b} f(x,y)\, dx[/mm] und für jedes
> [mm]y\in \left[c,d \right][/mm] das Integral [mm]G(y)=\int_{c}^{d} f(x,y)\, dy[/mm]
> dann gilt:
> [mm]$\int_{\left[ a,b \right]\times \left[ c,d \right]\}^{}$[/mm]
> f(x), dx [mm]$=\int_{a}^{b}\int_{c}^{d}[/mm] f(x,y),dy,dx .
>
>
> aber was soll ich denn da berechnen? ich könnte es doch
> nur in ein doppeltes Integral umschreiben, wie es im Satz
> ganz unten steht oder?
> Bei der zweiten Aufgabe ist es mir ja klar das ist meiner
> Meinung nach
> [mm]=\int_{0}^{1}\int_{1}^{3} x^3\bruch{1}{3}y ,dy,dx[/mm]
>
> [mm]=\int_{1}^{3} 2x^3\bruch{4}{3}y ,dx[/mm]
> [mm]=\bruch{11}{6}[/mm]
Du integrierst zunächst über y ab. Warum ist da also noch ein y vorhanden, obwohl du schon integriert hast?
Wo ist denn eigentlich auch das Additionszeichen geblieben? Die Ausgangsfunktion war doch [mm] f(x,y)=x^3+\bruch{1}{3}y
[/mm]
> aber was zur Hölle soll man bei Aufgabe 1 tun?
>
> Danke schnonmal
|
|
|
|