www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - zweimal differenzierbar
zweimal differenzierbar < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zweimal differenzierbar: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:06 So 31.05.2009
Autor: schlumpfinchen123

Aufgabe
Sei k [mm] \in \IR, [/mm] und sei f : [mm] \IR^3 [/mm] \ {0} [mm] \to \IR [/mm] , ^t (x, y, z) [mm] \to [/mm] f(x, y, z) := [mm] \bruch{sin(k\wurzel{x^2 + y^2 + z^2}) }{\wurzel{x^2 + y^2 + z^2}) } [/mm]

Zeigen Sie, dass f zweimal differenzierbar ist und die so genannte Schwingungsgleichung
[mm] D_1_1 [/mm] f(x,y,z) + [mm] D_2_2 [/mm] f(x,y,z) + [mm] D_3_3 [/mm] f(x,y,z) = [mm] -k^2 [/mm] f(x,y,z)

für alle ^t(x,y,z) [mm] \in \IR^3 [/mm] \ {0} erfüllt.

Hallo,

vielleicht kann mir jemand bei dieser Aufgabe weiterhelfen.
Ich bin mir nämlich nicht sicher, ob ich in der Lage bin die richtigen Ableitungen zu bilden . Wenn ich nach meinem Wissensstand (Kettenregel, Quotientenregel) z.B. [mm] D_1_1f(x,y,z) [/mm] bilde bekomme ich einen Bruch heraus, bei dem ich so meine Zweifel habe, ob er stimmt. Aber ich weiß auch nicht wie ich ihn anders berechnen kann. Ich schreibe ihn trotzdem mal auf. Vielleicht kann mir dann jemand sagen, ob er richtig ist oder nicht. Und falls nicht, vielleicht kann mir dann jemand sagen, wie ich richtig ableite?!

Also mithilfe von Ketten- und Quotientenregel erhalte ich für  [mm] D_1_1f(x,y,z) [/mm] folgenden Bruch:

[mm] \bruch{(3r^4x - 2kr^2x^2)cos(kr) + (3rx^2 - k^2r^3x^2)sin(kr)}{r^6}. [/mm]

mit r := [mm] \wurzel{x^2 + y^2 + z^2} [/mm]

Falls diese zweifache Ableitung nach x allerdings so stimmen sollte, weiß ich nicht, wie ich auf den Ausdruck
[mm] -k^2 [/mm] f(x,y,z) kommen kann, wenn ich [mm] D_1_1f(x,y,z), D_2_2f(x,y,z) [/mm] und  [mm] D_3_3f(x,y,z) [/mm] miteinander addieren würde. Wie bekomme ich denn dann den cos Ausdruck heraus??

Viele grüße und vielen dank schon mal,
schlumpfinchen!

        
Bezug
zweimal differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 22:53 So 31.05.2009
Autor: MathePower

Hallo schlumpfinchen123,

> Sei k [mm]\in \IR,[/mm] und sei f : [mm]\IR^3[/mm] \ {0} [mm]\to \IR[/mm] , ^t (x, y,
> z) [mm]\to[/mm] f(x, y, z) := [mm]\bruch{sin(k\wurzel{x^2 + y^2 + z^2}) }{\wurzel{x^2 + y^2 + z^2}) }[/mm]
>  
> Zeigen Sie, dass f zweimal differenzierbar ist und die so
> genannte Schwingungsgleichung
> [mm]D_1_1[/mm] f(x,y,z) + [mm]D_2_2[/mm] f(x,y,z) + [mm]D_3_3[/mm] f(x,y,z) = [mm]-k^2[/mm]
> f(x,y,z)
>  
> für alle ^t(x,y,z) [mm]\in \IR^3[/mm] \ {0} erfüllt.
>  Hallo,
>  
> vielleicht kann mir jemand bei dieser Aufgabe
> weiterhelfen.
>  Ich bin mir nämlich nicht sicher, ob ich in der Lage bin
> die richtigen Ableitungen zu bilden . Wenn ich nach meinem
> Wissensstand (Kettenregel, Quotientenregel) z.B.
> [mm]D_1_1f(x,y,z)[/mm] bilde bekomme ich einen Bruch heraus, bei dem
> ich so meine Zweifel habe, ob er stimmt. Aber ich weiß auch
> nicht wie ich ihn anders berechnen kann. Ich schreibe ihn
> trotzdem mal auf. Vielleicht kann mir dann jemand sagen, ob
> er richtig ist oder nicht. Und falls nicht, vielleicht kann
> mir dann jemand sagen, wie ich richtig ableite?!
>  
> Also mithilfe von Ketten- und Quotientenregel erhalte ich
> für  [mm]D_1_1f(x,y,z)[/mm] folgenden Bruch:
>  
> [mm]\bruch{(3r^4x - 2kr^2x^2)cos(kr) + (3rx^2 - k^2r^3x^2)sin(kr)}{r^6}.[/mm]


Das mußt Du nochmal nachrechnen.


>  
> mit r := [mm]\wurzel{x^2 + y^2 + z^2}[/mm]
>  
> Falls diese zweifache Ableitung nach x allerdings so
> stimmen sollte, weiß ich nicht, wie ich auf den Ausdruck
> [mm]-k^2[/mm] f(x,y,z) kommen kann, wenn ich [mm]D_1_1f(x,y,z), D_2_2f(x,y,z)[/mm]
> und  [mm]D_3_3f(x,y,z)[/mm] miteinander addieren würde. Wie bekomme
> ich denn dann den cos Ausdruck heraus??


Nun, mit den richtigen zweiten partiellen Ableitungen
fällt dieser "cos Ausdruck" heraus.



>  
> Viele grüße und vielen dank schon mal,
>  schlumpfinchen!


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de