www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - zyklische Gruppe
zyklische Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zyklische Gruppe: Problem
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 14.05.2012
Autor: Big_Head78

Aufgabe
Ein Element g einer Gruppe G heißt Erzeuger, wenn G = <g> gilt. In
diesem Fall sagen wir, dass die Gruppe G zyklisch sei.
Zeigen Sie, dass die Gruppe G = [mm] \IZ/(12) [/mm] zyklisch ist und geben Sie alle Erzeuger an.

Hallo,

mein Problem ist, das mir nicht klar ist was [mm] \IZ/(12) [/mm] ist...kann mir das jemand beantworten?

        
Bezug
zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Mo 14.05.2012
Autor: fred97


> Ein Element g einer Gruppe G heißt Erzeuger, wenn G = <g>
> gilt. In
>  diesem Fall sagen wir, dass die Gruppe G zyklisch sei.
>  Zeigen Sie, dass die Gruppe G = [mm]\IZ/(12)[/mm] zyklisch ist und
> geben Sie alle Erzeuger an.
>  Hallo,
>  
> mein Problem ist, das mir nicht klar ist was [mm]\IZ/(12)[/mm]
> ist...kann mir das jemand beantworten?

Schau mal hier:

http://www-ifm.math.uni-hannover.de/~holz/algebra/AlgebraI3.pdf

Seite 19, Beispiel 5.4

FRED


Bezug
                
Bezug
zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mo 14.05.2012
Autor: Big_Head78

Also ist hier mit [mm] \IZ/(12) [/mm] eigentlich [mm] \IZ/12\IZ [/mm] gemeint?

Bezug
                        
Bezug
zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Mo 14.05.2012
Autor: schachuzipus

Hallo,


> Also ist hier mit [mm]\IZ/(12)[/mm] eigentlich [mm]\IZ/12\IZ[/mm] gemeint?

Jo!

Gruß

schachuzipus


Bezug
        
Bezug
zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:47 Mi 16.05.2012
Autor: Big_Head78

Hi,

ziemlich offensichtilich, sind ja {1,-1} die Erzeuger dieser zyklischen Grp.
Reicht es dann, rechnerisch zu zeigen, dass mit 1 bzw -1 alle Elemente der Grp. durch dazuaddieren erzeugt werden? Also einfach rechnen?

Und wenn ich dann zeigen will, dass es keine weiteren mehr gibt, wie gehe ich dabei vor?

Bezug
                
Bezug
zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Mi 16.05.2012
Autor: angela.h.b.


> Hi,

>

> ziemlich offensichtilich, sind ja {1,-1} die Erzeuger
> dieser zyklischen Grp.

Hallo,

ist es wirklich so offensichtlich?
Schon die -1 ist erklärungsbedürftig, würd' ich sagen, denn es ist ist doch [mm] \IZ/ 12\IZ =\{0,1,2,3,...,11\}. [/mm]

> Reicht es dann, rechnerisch zu zeigen, dass mit 1 bzw -1
> alle Elemente der Grp. durch dazuaddieren erzeugt werden?
> Also einfach rechnen?

Ja.

Allerdings wäre  auch die Aussage

> sind ja {1,-1} die Erzeuger

noch zu hinterfragen.
Ich bin mit Dir einig, daß 1 und -1 (was auch immer sich dahinter verbergen mag) Erzeuger der Gruppe sind.
Aber sind es wirklich "die" Erzeuger die Gruppe? Die einzigen?
Dieser Frage solltest Du nochmal auf den Grund gehen. Ruhig wirklich primitiv rechnend, denn dann merkt man schnell, worauf es ankommt.

LG Angela


>

> Und wenn ich dann zeigen will, dass es keine weiteren mehr
> gibt, wie gehe ich dabei vor?


Bezug
                        
Bezug
zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Mi 16.05.2012
Autor: Big_Head78

Bezieht sich [mm] \IZ/12\IZ [/mm] nicht immer auf die Reste?
Also müsste dort beseer stehen: [mm] \IZ/12\IZ= [/mm] { [mm] \overline{0}, \overline{1},..., \overline{11} [/mm] } ?

Bezug
                                
Bezug
zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mi 16.05.2012
Autor: schachuzipus

Hallo BH,


> Bezieht sich [mm]\IZ/12\IZ[/mm] nicht immer auf die Reste?
>  Also müsste dort beseer stehen:

> [mm]\IZ/12\IZ=[/mm] [mm]\{\overline 0,\overline 1,\ldots,\overline{11}\}[/mm] ?

Ja, so schreibt man das üblicherweise ...

Gruß

schachuzipus


Bezug
                                        
Bezug
zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Fr 18.05.2012
Autor: Big_Head78

Also ich habe dann mal gerechnet und erkannt: "Erzeuger können nur Primzahlen sein und dann müssen sie noch Teilerfremd zu hier 12 sein."

Ich habe aber irgendwie Probleme mit den negativen Zahlen also z.B "-1".
Kann mir da bitte mal jemand eine Resterechnung als Beispiel zeigen?
Die -1 entspricht doch  [mm] \overline{1} [/mm] , oder?

Bezug
                                                
Bezug
zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Fr 18.05.2012
Autor: angela.h.b.


> Also ich habe dann mal gerechnet und erkannt: "Erzeuger
> können nur Primzahlen sein und dann müssen sie noch
> Teilerfremd zu hier 12 sein."

Hallo,

das zweite ist richtig: die zur 12 teilerfremden sind Erzeuger.
Hier sind das zufällig Primzahlen,

aber von [mm] \IZ/ 9\IZ [/mm] ist beispielsweise 4 ein Erzeuger.

>  
> Ich habe aber irgendwie Probleme mit den negativen Zahlen
> also z.B "-1".
>  Kann mir da bitte mal jemand eine Resterechnung als
> Beispiel zeigen?
>  Die -1 entspricht doch  [mm]\overline{1}[/mm] , oder?

Nein.

-1 ist die Abkürzung für "das Inverse von 1 bzgl. der Addition".

Also ist -1 das Element x, für welches gilt 1+x=0.

Überzeuge Dich davon, daß hier -1=11 .

LG Angela


Bezug
                                                        
Bezug
zyklische Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Fr 18.05.2012
Autor: Big_Head78


> Überzeuge Dich davon, daß hier -1=11 .
>  

Und genau das gelingt mir nicht... :(

z.B.: 23=1*12+11 und 23=2*12-1 und deswegen -1=11?


Bezug
                                                                
Bezug
zyklische Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Fr 18.05.2012
Autor: schachuzipus

Hallo BigHead,


> > Überzeuge Dich davon, daß hier -1=11 .
>  >  
> Und genau das gelingt mir nicht... :(
>  
> z.B.: 23=1*12+11 und 23=2*12-1 und deswegen -1=11?

Es ist in [mm]\IZ_{12}[/mm] ja 23=11

Schau mal:

[mm]\overline 1 \ + \ \overline{11} \ = \ \overline{12} \ = \ \overline{0} [/mm]

Dann addieren wir auf beiden Seiten das additiv Inverse von [mm]\overline{1}[/mm], also [mm]-\overline 1[/mm] von links:

[mm]\Rightarrow \underbrace{-\overline 1 \ + \ \overline 1}_{=\overline 0} \ + \ \overline{11} \ = \ -\overline 1 \ + \ \overline {0} \ = \ -\overline 1[/mm]

Also [mm] $\overline{11} [/mm] \ = \ [mm] -\overline{1}$ [/mm]


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de