www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - zyklische Matrizen
zyklische Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zyklische Matrizen: Frage
Status: (Frage) beantwortet Status 
Datum: 10:10 Do 25.11.2004
Autor: Nikolausi

Hallo!

Erstmal finde ich echt super, was ihr macht. Habe euer Forum bisher nur "passiv" genutzt, d.h. in euren Beiträgen gesucht. Jetzt habe ich allerdings mal ne Frage, bei der ich nicht weiter weiß. Vielleicht kann mir ja jemand helfen?

Aufgabe:

Sei K ein algebraisch abgeschlossener Körper und sei   [mm] \delta_A_0 [/mm] = det [mm] (tE^{m}-A_0) \in [/mm] K[t] das charakteristische Polynom von [mm] A_0 \in K^{m^x^m}. [/mm] Zeigen Sie:

(i) Wenn [mm] A_0 [/mm] zyklisch und diagonalisierbar ist, dann hat  [mm] \delta_A_0 [/mm] keine doppelten Nullstellen.

(ii) Wenn  [mm] \delta_A_0 [/mm] keine doppelten Nullstellen hat, ist [mm] A_0 [/mm] zyklisch und diagonalisierbar.

Was ich mir bisher dazu überlegt habe:

(i) Da die Matrix diagonalisierbar ist, hat sie m Eigenwerte.

(ii) Da es keine doppelten Nullstellen gibt, sind die Eigenwerte paarweise verschieden. Da die Eigenvektoren folglich linear unabhängig sind, ist die Matrix diagonalisierbar.

Nun haben wir in der VL eine zyklische Matrix folgendermaßen definiert:

Eine Matrix [mm] A_0 \in K^n^x^m [/mm] ist dann und nur dann zyklisch, wenn es Vektoren v  [mm] \in K^m [/mm] gibt, so dass [mm] \{v, Av, A^2v,...,A^n^-^1v \} [/mm] linear unabhängig und folglich eine Basis sind.

Leider komme ich nicht drauf, wie ich die Definition für meine Überlegungen beutzen kann. Stehe grad auf dem Schlauch. Vielleicht kann mir ja jemand helfen?! Wäre echt nett!

Danke schön!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
zyklische Matrizen: (i)
Status: (Antwort) fertig Status 
Datum: 04:17 So 05.12.2004
Autor: Marc

Hallo Nikolausi,

[willkommenmr]

Rechtzeitig zu Nikolaus eine Reaktion auf deine Frage :-)

> Aufgabe:
>  
> Sei K ein algebraisch abgeschlossener Körper und sei  
> [mm]\delta_A_0[/mm] = det [mm](tE^{m}-A_0) \in[/mm] K[t] das charakteristische Polynom von [mm]A_0 \in K^{m^x^m}.[/mm] Zeigen Sie:
>  
> (i) Wenn [mm]A_0[/mm] zyklisch und diagonalisierbar ist, dann hat  [mm]\delta_A_0[/mm] keine doppelten Nullstellen.
>  
> (ii) Wenn  [mm]\delta_A_0[/mm] keine doppelten Nullstellen hat, ist [mm]A_0[/mm] zyklisch und diagonalisierbar.
>  
> Was ich mir bisher dazu überlegt habe:
>  
> (i) Da die Matrix diagonalisierbar ist, hat sie m Eigenwerte.
>  
> (ii) Da es keine doppelten Nullstellen gibt, sind die Eigenwerte paarweise verschieden. Da die Eigenvektoren folglich linear unabhängig sind, ist die Matrix diagonalisierbar.
>  
> Nun haben wir in der VL eine zyklische Matrix folgendermaßen definiert:
>  
> Eine Matrix [mm]A_0 \in K^n^x^m[/mm] ist dann und nur dann zyklisch, wenn es Vektoren v  [mm]\in K^m[/mm] gibt, so dass [mm]\{v, Av, A^2v,...,A^n^-^1v \}[/mm] linear unabhängig und folglich eine Basis sind.
>  
> Leider komme ich nicht drauf, wie ich die Definition für meine Überlegungen beutzen kann. Stehe grad auf dem Schlauch. Vielleicht kann mir ja jemand helfen?! Wäre echt nett!

Bisher habe ich mir nur etwas zu (i) überlegt.

Angenommen, [mm] $\delta_{A_0}$ [/mm] hat eine doppelte Nullstelle [mm] $\lambda_0$, [/mm] dann gibt es die Darstellung [mm] $\delta_{A_0}=(t-\lambda_0)*(t-\lambda_0)*\delta'_{A_0}$ [/mm]

Sei v ein Eigenvektor zu [mm] $\lambda_0$. [/mm]
Dann gilt doch [mm] $(A_0-\lambda_0*E)*\delta'_{A_0}(A_0)(v)=0$, [/mm] da [mm] $(A_0-\lambda*E)(v)=A_0(v)-\lambda*v=\lambda*v-\lambda*v=0$. [/mm]

Sei v kein Eigenvektor zu [mm] $\lambda_0$. [/mm]
Dann gilt [mm] $\delta'_{A_0}(A_0)(v)=0$, [/mm] denn [mm] $\delta_{A_0}$ [/mm] annulliert ja auf jeden Fall die Matrix [mm] $A_0$, [/mm] und der Faktor (bzw. die Faktoren, es sind ja zwei) [mm] $(A_0-\lambda*E)$ [/mm] leistet keinen Beitrag dazu.

Mit anderen Worten: Die Matrix [mm] $(A_0-\lambda_0*E)*\delta'_{A_0}(A_0)$ [/mm] bildet jeden Vektor auf die Null ab, d.h., [mm] $\{x,A_0 v,A_0^2 v,\ldots,A^{m-1}\}$ [/mm] kann für kein v linear unabhängig sein. Widerspruch zur Zyklizität von [mm] $A_0$. [/mm]

Zu (ii) fällt mir im Augenblick nichts ein.
Ist die Aussage nicht sogar falsch, denn sie behauptet doch auch, dass jede Matrix, die keine Eigenwerte besitzt, diagonalisierbar ist. Kann das stimmen?

Viele Grüße,
Marc



Bezug
                
Bezug
zyklische Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:37 Mo 06.12.2004
Autor: Stefan

Lieber Marc!

> Zu (ii) fällt mir im Augenblick nichts ein.
>  Ist die Aussage nicht sogar falsch, denn sie behauptet doch auch, dass jede Matrix, die keine
> Eigenwerte besitzt, diagonalisierbar ist. Kann das stimmen?

Du hast wohl übersehen, dass der Körper algebraisch abgeschlossen ist und dass es daher immer $m$ Eigenwerte (mit Vielfachheiten gerechnet) gibt.

Liebe Grüße
Stefan
  

Bezug
                        
Bezug
zyklische Matrizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:47 Mo 06.12.2004
Autor: Marc

Lieber Stefan!

> > Zu (ii) fällt mir im Augenblick nichts ein.
>  >  Ist die Aussage nicht sogar falsch, denn sie behauptet
> doch auch, dass jede Matrix, die keine
> > Eigenwerte besitzt, diagonalisierbar ist. Kann das
> stimmen?
>  
> Du hast wohl übersehen, dass der Körper algebraisch
> abgeschlossen ist und dass es daher immer [mm]m[/mm] Eigenwerte (mit
> Vielfachheiten gerechnet) gibt.

Ich wußte gar nicht, was algebraisch abgeschlossen ist, deswegen habe ich es wohl überlesen [verlegen].
Aber jetzt ist es klar :-)

Liebe Grüße,
Marc

Bezug
        
Bezug
zyklische Matrizen: (ii)
Status: (Antwort) fertig Status 
Datum: 09:35 Mo 06.12.2004
Autor: Stefan

Hallo Nikolausi!

Nochmal zur (i), auch für mich zum Verständnis:

Marc hat also im Falle einer doppelten Nullstelle [mm] $\lambda_0$ [/mm] ein Polynom $p(t) = [mm] (t-\lambda_0)\cdot \delta'_{A_0}(t)$ [/mm] $m-1$-ten Grades konstruiert mit [mm] $p(A_0)(v) [/mm] = 0$ für alle $v [mm] \in \IK^m$. [/mm] Dies widerspricht der Tatsache, dass [mm] $A_0$ [/mm] zyklisch ist, denn dann wären für alle $v [mm] \in \IK^m$ [/mm] die Vektoren [mm] $v,A_0v,\ldots,A_0^{m-1}v$ [/mm] linear abhängig.

Jetzt zur (ii)

Da der Körper algebraisch abgeschlossen ist, zerfällt das charakteristische Polynom und wir haben in dem Fall, dass wir es keine doppelten Nullstellen besitzt, eine Basis aus Eigenvektoren von [mm] $A_0$ [/mm] (da die Eigenvektoren zu verschiedenen Eigenwerten linear unabhängig sind). Demnach ist [mm] $A_0$ [/mm] diagonalisierbar. Es seien [mm] $x_1,\ldots,x_m$ [/mm] solche Basisvektoren, d.h. [mm] $x_i$ [/mm] sei ein Eigenvektor zum Eigenwert [mm] $\lambda_i$. [/mm] Dann gilt für

[mm] $v:=x_1+x_2+\ldots [/mm] + [mm] x_m$, [/mm]

dass [mm] $v,A_0v,\ldots,A_0^{m-1}v$ [/mm] linear unabhängig sind, denn wären sie es nicht, so müsste es ein (oBdA normiertes) Polynom $p$ $m-1$-ten Grades geben mit

[mm] $p(A_0)(v) [/mm] = 0$.

Notwendigerweise müsste aber $p$ ein Teiler von [mm] $CP_{A_0}$ [/mm] sein, also von der Form

$p(t) = [mm] \prod\limits_{{{i=1} \atop {i \ne j}}}^m [/mm] (t - [mm] \lambda_i)$ [/mm]

für ein $j [mm] \in \{1,2,\ldots,m\}$. [/mm]

Dann wäre aber:

[mm] $p(A_0)(v) [/mm] = [mm] \prod\limits_{{{i=1} \atop {i \ne j}}}^m [/mm] (A - [mm] \lambda_i E_m)(x_1+\ldots [/mm] + [mm] x_m) [/mm] = [mm] \prod\limits_{{{i=1} \atop {i \ne j}}}^m [/mm] (A - [mm] \lambda_iE_m) x_j \ne [/mm] 0$,

Widerspruch.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de