www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Funktionenscharuntersuchung
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Funktionenscharuntersuchung

Schule

Gegeben sei die Funktionenschar durch

$ f_{a}(x) = x^3 + ax^2 + (a-1) x $


Dabei sei $ a \in \IR $ eine beliebige, aber feste Zahl; für jedes a ergibt sich dadurch eine weitere Funktion, die mit den anderen jedoch bestimmt Eigenschaften gemeinsam hat.

Als erstes untersucht man die Funktion wie bei einer "normalen" Funktionsuntersuchung2 auf Schnittpunkte mit den Achsen, Extrem- und Wendestellen, usw.
Dabei muss man nur beachten, dass a eine reelle Konstante ist!


$ f'_a(x) = 3\cdot{}(x)^2 + 2a\cdot{}x $


$ f''_a(x) = 6x + 2a $

Anschließend kann man feststellen, dass

  1. sich alle Funktionen in einem bestimmten Punkt schneiden,
  2. an einer bestimmten Stelle dieselbe Steigung haben,
  3. oder weitere Eigenschaften, die sich aus den speziellen Eigenschaften der Schar ergeben.
  4. Man kann danach auch fragen, auf welchen (Funktions-)Kurven sich die Extrem- oder Wendepunkte bewegen, wenn man für den Parameter unterschiedliche Werte einsetzt (siehe Ortskurven).

1. Alle Funktionen schneiden sich in einem Punkt:

Man wählt zwei verschiedene Parameterwerte a und b mit $ a \ne b $
und untersucht, an welchen Stellen die Funktionswerte übereinstimmen:

$ f_{a}(x) = f_{b}(x) $
$ \Rightarrow x^3 + b\cdot{}x^2 + x\cdot{}(b-1) = x^3 + a\cdot{}x^2 + x\cdot{}(a-1) $
nach x auflösen ergibt:$ x = -1 \vee x = 0 \vee a - b = 0 $

Da $ a \ne b $ vorausgesetzt ist, kommt die dritte "Lösung" nicht in Frage, wohl aber die beiden anderen: alle Funktionen dieser Schar schneiden sich an den Stellen -1 und 0, d.h. in den Punkten $ S_1 (-1|0) $ mit der Steigung $ m_1= 2-a $ und $ S_2 (0|0) $ mit $ m=a-1 $.


2. Alle Funktionen haben an derselben Stelle dieselbe Steigung:

$ f'_{a}(x) = f'_{b}(x) $
$ \Rightarrow 3\cdot{}x^2 + 2a\cdot{}x + a-1 = 3\cdot{}x^2 + 2b\cdot{}x + b-1 $
nach x auflösen ergibt: $ x = \bruch{-1}{2} $

Für alle Funktionen ergibt sich bei $ x = \bruch{-1}{2} $ dieselbe Steigung:
$ m = f'_a(\bruch{-1}{2}) = \bruch{-1}{4} $, ganz unabhängig von a.


Erstellt: Fr 11.03.2005 von informix
Letzte Änderung: Fr 11.03.2005 um 13:02 von informix
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de