www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
MaterialForum357
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

MaterialForum357

Kurvendiskussion


ganzrationale Funktionen

In diesem Abschnitt wird eine vollständige Kurvendiskussion für eine ganzrationale Funktion durchgeführt. Als Beispielfunktion dient dabei die Funktion

$ f(x) = 0,5x^3 - 4x^2 + 8x $

Ganzrationale Funktionen sind allgemein stetig und differenzierbar, sodass man sich über Definitionslücken und Polstellen keine Gedanken machen muss.

Definitionsbereich

Da wie bereits erwähnt keine Polstellen oder Definitionslücken auftreten können gilt für ganzrationale Funktionen:

$ D = \IR $

Der Definitionsbereich ist also stets die Menge der reellen Zahlen (solange in der Aufgabenstellung nicht explizit Ausnahmen angegeben sind).

Symmetrieeigenschaften

An ganzrationalen Funktionen lässt sich sehr einfach erkennen ob eine Funktion achsensymmetrisch zur y-Achse oder punktsymmetrisch zum Ursprung ist:

Besitzt die ganzrationale Funktion ausschliesslich gerade Exponenten, so ist die Funktion achsensymmetrisch zur y-Achse.

Besitzt die ganzrationale Funktion ausschliesslich ungeradzahlige Exponenten, so ist die Funktion punktsymmetrisch zum Koordinatenursprung.

Treten sowohl geradzahlige als auch ungeradzahlige Exponenten auf so liegt keine Symmetrie vor.

Schnittpunkte mit den Koordinatenachsen

Den Schnittpunkt mir der y-Achse (y-Achsenabschnitt) erhält man, indem man in die Funktion den x-Wert $ x = 0 $ einsetzt. Für die Beispielfunktion würde gelten:

f(0) = (0,5 * 0) - (4 * 0) + (8 * 0) = 0

$ S_Y (0|0) $

Die Schnittpunkte mit der x-Achse (Nullstellen) kann man mit Hilfe verschiedener Verfahren ermitteln (z.B. p-q-Formel, Mitternachtsformel, quadratische Ergänzung u.s.w.). Für die Beispielfunktion würde gelten:

f(x) = 0

$ 0,5x^3 - 4x^2 + 8x = 0 $

Man kann die Funktion durch Ausklammern in eine quadratische Funktion umformen und gleichzeitig die erste Nullstelle ermitteln:

$ x (0,5x^2 - 4x + 8) $

Das ausgeklammerte x wird nur Null, wenn man für x auch Null einsetzt und ein Produkt ist genau dann Null, wenn einer der Faktoren Null ist. Daraus folgt:

$ x_1 = 0 $

$ S_x_1 (0|0) $

Um die restlichen Nullstellen der Beispielfunktion zu ermitteln kann man nun zum Beispiel die p-q-Formel verwenden, wenn man zuvur den Faktor vor dem ersten x entfernt (alternativ verwendet man die Mitternachtsformel):

$ 0,5x^2 - 4x + 8 |\cdot{}2 $

$ = x^2 - 8x + 16 $

p = -8
q = 16

Es ergibt sich also:

$ - \bruch {-8}{2}\ +/- \wurzel{\bruch{-8^2}{4}\ - 16}\ $

$ x_2 = 4 $

$ S_x_2 (4|0) $

Extrema



Exponentialfunktionen


Logarithmusfunktionen


Integralrechnung


Vektorrechnung


Lösen von linearen Gleichungssystemen (Lineare Algebra)


Analytische Geometrie

Mitteilung des Autors: Artikel unvollständig, wird fortgesetzt !!!





Erstellt: So 11.05.2008 von argl
Letzte Änderung: Di 20.05.2008 um 19:22 von argl
Weitere Autoren: Marc
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de