www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Schranke
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Schranke

Zahlenfolgen oder Funktionen, deren Werte nicht ins Unendliche reichen, nennt man beschränkt.
Um die Beschränktheit konkret zu erfassen, verwendet man die Begriffe der oberen und der
unteren Schranke einer Zahlenfolge oder Funktion.


Zahlenfolgen:

    $ a=(a_n)_{n\in \IN} $    sei eine Zahlenfolge und  $ K $  eine reelle Zahl.

    Dann heisst  $ K $  eine

    obere Schranke  der Zahlenfolge  $ a $ , falls  $ K\ge a_n $  für alle  $ n\in \IN $

    bzw. eine

    untere Schranke  der Zahlenfolge  $ a $ , falls  $ K\le a_n $  für alle  $ n\in \IN $


Funktionen:

    $ f: D_f \to \IR $    sei eine reelle Funktion und  $ K $  eine reelle Zahl.

    Dann heisst  $ K $  eine

    obere Schranke  der Funktion  $ f $ , falls  $ K\ge f(x) $  für alle  $ x\in D_f $

    bzw. eine

    untere Schranke  der Funktion  $ f $ , falls  $ K\le f(x) $  für alle  $ x\in D_f $


(Die Definitionen für den Fall der Zahlenfolgen sind Spezialfälle derjenigen für Funktionen,
denn eine Zahlenfolge ist eigentlich nichts anderes als eine Funktion mit Definitionsbereich  $ D_f=\IR $.)


Begriffe:

Besitzt eine Funktion oder eine Zahlenfolge eine obere Schranke, so heisst sie "nach oben beschränkt".

Besitzt sie eine untere Schranke, so heisst sie "nach unten beschränkt".

Liegt sowohl eine obere als auch eine untere Schranke vor, dann ist die Funktion bzw. die Folge "beschränkt".



Anwendung:

In der Grundlegung der Analysis (Analysis infinitorum, in etwa "Untersuchung des Unendlichen und des
unendlich Kleinen") spielt der Begriff Beschränktheit eine wichtige Rolle, dann man kann "das Unendliche
nur bändigen, indem man vom Endlichen, Beschränkten ausgeht" und Gesetze der Logik anwendet.

Als Beispiel nur ein wichtiger Satz:

Jede monotone und beschränkte Zahlenfolge besitzt einen Grenzwert.    Konvergenzkriterien   



Beschränktheit bei Mengen:

Der Begriff "beschränkt" hat eigentlich seine Heimat gar nicht unbedingt bei den Funktionen und Zahlenfolgen,
sondern in der Mengenlehre, genauer im Gebiet der halbgeordneten oder geordneten Mengen, der metrischen
Räume etc. . Dazu nur dies als Zugangslink:    Wikipedia: Beschränktheit



Letzte Änderung: Do 08.01.2009 um 18:45 von Al-Chwarizmi
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de