www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
direktes_Produkt_von_Halbgruppen
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

direktes Produkt von Halbgruppen

Definition direktes Produkt von Halbgruppen


Schule


Universität

Es sei $ I $ eine nichtleere Menge und $ \{(H_{\alpha},\circ_{\alpha})\}_{\alpha \in I} $ eine Familie von Halbgruppen. Auf dem mengentheoretischen direkten Produkt

$ \prod\limits_{\alpha \in I} H_{\alpha}= \left\{f\, \vert\, f:I \to \bigcup\limits_{\alpha \in I} H_{\alpha} \ \mbox{\scriptsize mit} \ f(\alpha) \in H_{\alpha} \right\} $

definieren wir eine innere Verknüpfun $ \circ $ durch

$ (f,g) \mapsto f \circ g $,

wobei $ f \circ g : I \to \bigcup\limits_{\alpha \in I} H_{\alpha} $ bestimmt ist durch

$ (f \circ g)(\alpha):= f(\alpha) \circ_{\alpha} g(\alpha) $.

Da die $ H_{\alpha} $ nicht leer sind, ist auch $ \prod\limits_{\alpha \in I} H_{\alpha} $ nicht leer (nach dem Auswahlaxiom) und da ferner alle $ \circ_{\alpha} $ assoziativ sind, ist auch $ \circ $ assoziativ, denn

$ [(f \circ g) \circ h](\alpha) = f(\alpha) \circ_{\alpha} g(\alpha) \circ_{\alpha} h(\alpha) = [f \circ (g \circ h)](\alpha) $.

Also ist $ \left( \prod\limits_{\alpha \in I}H_{\alpha},\circ \right) $ eine Halbgruppe, das direkte Produkt der Halgruppen $ (H_{\alpha},\circ_{\alpha}),\, \alpha \in I $.

Im Sonderfall $ I=\{1,2,\ldots,n\} $ ist das

$ H_1 \times \ldots \times H_n = \{(a_1,\ldots,a_n)\, \vert \, a_i \in H_i \ (1 \le i \le n)\} $

mit komponentenweiser Verknüpfung

$ (a_1,\ldots,a_n) \circ (b_1,\ldots,b_n) = (a_1 \circ_1 b_1,\ldots,a_n \circ_n b_n) $.

Man beachte hier, dass die $ \circ_i $ völlig verschiedene Verknüpfungen sein können, zum Beispiel im direkten Produkt von $ (\IZ,+) $ mit $ (\IZ,\cdot) $ ist

$ (x,y) \circ (u,v) = (x+u,yv) $.


Quelle: K. Meyberg, Algebra Teil 1, Carl Hanser Verlag, 1980, ISBN 3-446-13079-9

Erstellt: Sa 30.07.2005 von Stefan
Letzte Änderung: So 31.07.2005 um 21:27 von Stefan
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de