www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Oberstufenmathematik (Klassen 11-13)" - Abhängigkeiten durch Terme
Abhängigkeiten durch Terme < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Oberstufenmathematik (Klassen 11-13)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abhängigkeiten durch Terme: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:28 So 06.10.2013
Autor: NinaAK13

Aufgabe
Abhängigkeiten durch Terme beschreiben
Verschiedene zylinderförmige Gefäße sollen geeicht werden.
a)Bestimmen Sie einen Zusammenhang zwischen der Höhe h, in der die 1-Liter-Markierung angebracht werden muss, und dem Innenradius r des Gefäßes.
b) In welcher Höhe befindet sich die Markierung, wenn der Radius 5cm beträgt?

Diese Aufagabe ist Hausaufgabe. Ich weiß nicht wie ich die Höhe des Gefäßes zu b) berechnen soll. Zuerst habe ich überlegt mit der Volumenformel des Zylinders V=pi*r²*h zu rechnen, jedoch kann ich ja die Maßeinheiten Liter mit Zentimeter nicht vergleichen... Kann mir jemand bitte helfen wie ich vorgehen muss?


        
Bezug
Abhängigkeiten durch Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 06.10.2013
Autor: Steffi21

Hallo,

[mm] 1l\hat=1000cm^3 [/mm]

beginne mal, dir eine Tabelle anzulegen, zwei Spalten, gebe dir den Radius r vor und berechne die Höhe h

Radius r        Höhe h      
  1 cm          318,31 cm
  2 cm           79,58 cm
  3 cm

die Formel für das Volumen kannst du ja nach h umstellen, um zu rechnen

Steffi

Bezug
                
Bezug
Abhängigkeiten durch Terme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:10 So 06.10.2013
Autor: NinaAK13

Vielen Danke für die schnelle Antwort!
Wenn man Monate lang kein Mathe mehr hatte ist das garnicht so einfach da wieder reinzukommen...
Ich komme nun auf den Zusammenhang bei a) Desto größer r, umso  kleiner h.
bei b) komme ich dann auf das Ergebnis 12,73cm.
Ich hoffe das ist nun richtig..

Bezug
        
Bezug
Abhängigkeiten durch Terme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 So 06.10.2013
Autor: ullim

Hi,

Aufgabe b ist richtig, aber zu Aufgabe a kann man etwas genaueres sagen. Setzte für V=1000 [mm] cm^3 [/mm] und löse die Gleichung nach h auf. Du bekommst dann die Höhe in Abhängigkeit von r.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Oberstufenmathematik (Klassen 11-13)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de