www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Abnahme und Zunahme
Abnahme und Zunahme < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abnahme und Zunahme: Idee
Status: (Frage) beantwortet Status 
Datum: 19:58 Sa 01.12.2012
Autor: Salva

Aufgabe
Bestimmen Sie die maximale Wachstumsgeschwindigkeit wie auch den Zeitpunkt der stärksten Annahme.

Hallo ihr Lieben!

Ich soll bei einer Aufgabe, in der es um eine Fischpopulation geht, die maximale Wachstumsgeschwindigkeit, sowie den Zeitpunkt der stärksten Abnahme berechnen.

Funktion: 4x * e^-0,5x
Bei der maximalen Geschwindigkeit würde ich also den Wendepunkt berechnen.

Als Ergebnis habe ich dann x=4 und y= 0
Kann ich dann sagen, dass an dieser Stelle, das Wachstum am höchsten ist?


Bei der Abnahme bin ich mir sehr unsicher. Ich war der Meinung, dass man auch hier wieder den Wendepunkt berechnen müsste, die Steigung dieses Wendepunktes aber negativ sein muss, damit es sich um eine Abnahme handelt.
Ich habe aber nur einen Wendepunkt ausrechnen können.

Wie kann ich also die Abnahme berechnen? Auch wieder durch einen Wendepunkt oder doch durch die Berechnung eines Tiefpunktes?


Liebe Grüße und vielen Dank im vorraus!

        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:15 Sa 01.12.2012
Autor: MathePower

Hallo Salva,

> Bestimmen Sie die maximale Wachstumsgeschwindigkeit wie
> auch den Zeitpunkt der stärksten Annahme.
>  Hallo ihr Lieben!
>  
> Ich soll bei einer Aufgabe, in der es um eine
> Fischpopulation geht, die maximale
> Wachstumsgeschwindigkeit, sowie den Zeitpunkt der
> stärksten Abnahme berechnen.
>  
> Funktion: 4x * e^-0,5x
>  Bei der maximalen Geschwindigkeit würde ich also den
> Wendepunkt berechnen.
>  
> Als Ergebnis habe ich dann x=4 und y= 0
>  Kann ich dann sagen, dass an dieser Stelle, das Wachstum
> am höchsten ist?
>  

Ob an dieser Stelle die maximale Wachstumsgeschwindigkeit vorliegt,
musst Du erst nachweisen.


>
> Bei der Abnahme bin ich mir sehr unsicher. Ich war der
> Meinung, dass man auch hier wieder den Wendepunkt berechnen
> müsste, die Steigung dieses Wendepunktes aber negativ sein
> muss, damit es sich um eine Abnahme handelt.
> Ich habe aber nur einen Wendepunkt ausrechnen können.
>  
> Wie kann ich also die Abnahme berechnen? Auch wieder durch
> einen Wendepunkt oder doch durch die Berechnung eines
> Tiefpunktes?

>


Betrachte dazu die Funktion der ersten Ableitung
bzw. deren Eigenschaften.

  

>
> Liebe Grüße und vielen Dank im vorraus!


Gruss
MathePower

Bezug
                
Bezug
Abnahme und Zunahme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Sa 01.12.2012
Autor: Salva

Also ich habe jetzt bei der ersten Ableitung: f'(x)= e^-0,5x * (4-2x)

Dafür habe ich bei der Rechnung einen HP erhalten mit den Koordinaten 2/2,943

Das bedeutet, dass das Wachstum hier am höchsten ist, weil an der Stelle 2 die meisten Mikroorganismen hinzukommen.

Stimmt das so?

Tut mir leid, aber bei der Abnahme habe ich nach wie vor Schwierigkeiten. Ich habe mir die erste Ableitung angeguckt, verstehe es aber leider immernoch nicht.

Bezug
                        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Sa 01.12.2012
Autor: MathePower

Hallo Salva,

> Also ich habe jetzt bei der ersten Ableitung: f'(x)=
> e^-0,5x * (4-2x)
>  
> Dafür habe ich bei der Rechnung einen HP erhalten mit den
> Koordinaten 2/2,943
>  
> Das bedeutet, dass das Wachstum hier am höchsten ist, weil
> an der Stelle 2 die meisten Mikroorganismen hinzukommen.
>
> Stimmt das so?
>  


Nein, das stimmt nicht.


> Tut mir leid, aber bei der Abnahme habe ich nach wie vor
> Schwierigkeiten. Ich habe mir die erste Ableitung
> angeguckt, verstehe es aber leider immernoch nicht.  


Entscheide erst um welche Art Extrema es sich
bei der ersten Ableitung an der Stelle x=4 handelt.


Gruss
MathePower

Bezug
                                
Bezug
Abnahme und Zunahme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 So 02.12.2012
Autor: Salva

Hallo,

ich weiß nicht genau, wie ich das mit der maximalen Wachstumssteigung beweisen soll.

Es steht als Zusatzinformation, dass die t bei f(t) für die Zeit in Tagen steht, die Wachstumsgeschwindigkeit einer Population der Mikroorganismen in einem Lebensraum.

Das bedeutet doch, dass ich die Funktion für die Wachstumgeschwindigkeit bereits habe. Ich hab überhaupt kein Gefühl dafür, was es bedeutet, wenn ich jetzt die erste Ableitung bilde. Was sagt mir diese dann?

Ich habe trotzdem die erste Ableitung gleich null gesetzt und habe für t=-2 erhalten. An dieser Stelle ist ein Hochpunkt, doch weiß ich nicht so recht, ob das nun die maximale Wachstumssteigerung ist...



Bezug
                                        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 So 02.12.2012
Autor: leduart

Hallo
Bitte zitiere in Zukunft gleich die exakte Aufgabe. ist jetzt richtig, dass f(t)=4t* e^-0,5t die Fischpopulation in Abh. von der Zeit ist? oder ist f(t) die Wachstumsheschwindigkeit?
Wenn das zweite der Fall ist, kannst du das Max und Min berechnen indem du f differenzierst.
Es ist immer gut, du lässt dir die Funktion erst einmal plotten, dann siehst du, das am Anfang die Geschwindigkeit zunimmt, ein Max erreicht und dann wieder abnimmt.
t=-2 ist sicher sinnlos, da die fkt ja wohl nur für t>0 definiert ist! da hast du also einen Rechenfehler. bitte poste nicht nur ergebnisse, sondern auch deine Rechnungen, z.B f'(t)
Gruss leduart

Bezug
                                                
Bezug
Abnahme und Zunahme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 So 02.12.2012
Autor: Salva

f(t) ist, so wie ich es der Aufgabenstellung entnehmen kann beides. Also die Wachstumsgeschwindigkeit in Abhänigkeit von der Zeit.



Bezug
                                                        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:30 So 02.12.2012
Autor: Steffi21

Hallo, laut Aufgabenstellung ist wohl

[mm] f(t)=4*t*e^{-0,5t} [/mm]

die Wachstumsgeschwindigkeit in Abhängigkeit von der Zeit, an der Stelle x=2 liegt ein Extrema vor, du mußt aber noch die Art klären
den Zeitpunkt der stärksten Abnahme bekommst du über die 2. Ableitung

Steffi


Bezug
                                                                
Bezug
Abnahme und Zunahme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:40 So 02.12.2012
Autor: Salva

Vielen Dank, es hat sich dadurch für mich einiges erklärt.


Ich habe jetzt für das Extremum einen Hochpunkt mit den Koordinaten (2/2,94) berechnen können.

Über die zweite Ableitung habe ich einen Wendepunkt mit den Koordinaten (4/2,16) berechnen können. Die dritte Ableitung spielt hier doch aber auch eine entscheidende Rolle, oder? Für f'''(4) ergibt sich 0,135. Ich weiß, dass es auf jeden Fall etwas mit der Kurvenrichtung zu tun hat, aber ist das für meine Aufgabenstellung so wichtig?

Bezug
                                                                        
Bezug
Abnahme und Zunahme: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 So 02.12.2012
Autor: Steffi21

Hallo, zum Zeitpunkt t=2...  hier fehlt die Einheit, ist aus der Aufgabe nicht ersichtlich, wird die maximale Wachstumsgeschwindigkeit erreicht, zum Zeitpunkt t=4... liegt die stärkste Abnahme vor, [mm] f'''(4)\not=0 [/mm] ist ausreichend, Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de