www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Analysis
Analysis < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Analysis: Zahlen komplexe
Status: (Frage) beantwortet Status 
Datum: 22:44 Mi 26.10.2011
Autor: Elektro21

Hallo in diesen abendstunden bin ich an einer Aufgabe stecken geblieben wo ich einfach nicht weiter komme.

Berechnen sie:

( 1+ i)^20

Ich hab leider keine ansätze da ich nicht weiß wie ich vorgehen soll.
Danke

        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:51 Mi 26.10.2011
Autor: leduart

Hallo
schreib um in [mm] 1+i=r*e^{i\phi} [/mm] dann hoch 20 am Ende wieder umwandeln
für die vorliegende aufgabe leichter:
anderer Weg : rechne [mm] (1+i)^2 [/mm] daraus [mm] (1+i)^4 [/mm] daraus   das gesuchte
Gruss  leduart


Bezug
                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 26.10.2011
Autor: Elektro21

Meinst du es so :

( [mm] 1*e^i*phi [/mm] )^20 ?

Ist es so richtig ?

Aber was mache ich weiter?

Bezug
                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:04 Mi 26.10.2011
Autor: kushkush

Hallo,


> meinst du so

nein


Berechne den Betrag $r$  und das Argument [mm] $\phi$ [/mm] von $1+i$

Dann kannst du das mit [mm] $re^{i\phi}$ [/mm] einsetzen und [mm] $(re^{i\phi})^{50} [/mm] = [mm] r^{50}e^{50 i \phi} [/mm] $ berechnen.  


Gruss
kushkush

Bezug
                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 23:09 Mi 26.10.2011
Autor: leduart

Hallo
das  richtige r und [mm] \phi [/mm] einsetzen und [mm] (ra^b)^c=r^c*a^{bc} [/mm] verwenden +
Aber rechne lieber [mm] (1+i)^2 [/mm] einfach aus (binomische Formel), nimm das dann hoch 10 oder erst nochmal quadrieren und dann hoch 5
Gruss leduart


Bezug
                                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:20 Do 27.10.2011
Autor: Elektro21

Aber wie mache ich das genau.
Kannst du mir einen Ansatz geben?

Bezug
                                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:26 Do 27.10.2011
Autor: leduart

Hallo
du wirst doch wohl [mm] (1+i)^2= [/mm] (1+i)*(1+i)rechnen können (an [mm] i^2=-1 [/mm] )denken
Gruss leduart


Bezug
                                                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:03 Do 27.10.2011
Autor: Elektro21

Mein Ansatz wäre

(1 +1i +1i -1) = 2i

Bezug
                                                        
Bezug
Analysis: soweit richtig
Status: (Antwort) fertig Status 
Datum: 11:08 Do 27.10.2011
Autor: Roadrunner

Hallo Eletro21!


> Mein Ansatz wäre
> (1 +1i +1i -1) = 2i

[ok] Und was ergibt dies nun quadriert? Und das neue Ergebnis dann nochmal "hoch 5".

Schließlich gilt:

[mm](...)^{20} \ = \ (...)^{2*2*5} \ = \ \left< \ \left[ \ \left(...)^2 \ \right]^2 \ \right>^5[/mm]


Gruß vom
Roadrunner


Bezug
                                                                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Do 27.10.2011
Autor: Elektro21

( 1 + i) ^10 wäre doch 32 i richtig?

Bezug
                                                                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Do 27.10.2011
Autor: fred97


> ( 1 + i) ^10 wäre doch 32 i richtig?

Ja, [mm] $(1+i)^{10}=32i$ [/mm]

FRED


Bezug
                                                                                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:06 Do 27.10.2011
Autor: Elektro21

Kann ich nicht so irgendwie die Aufgabe lösen?

Bezug
                                                                                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Do 27.10.2011
Autor: leduart

Hallo
[mm] (32i)^2=? [/mm]
[mm] (a^{10})^2=a^{20} [/mm]
warum rechnest du nicht gleich (2i)^10
Gruss leduart


Bezug
                                                                                                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Mo 31.10.2011
Autor: Elektro21

Kann mir jemand sagen wie ich das richtig ausrechnen kann.

Bezug
                                                                                                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Mo 31.10.2011
Autor: Steffi21

Hallo

du möchtest berechnen

[mm] (1+i)^{20} [/mm]

[mm] =(1+i)^{2^{10}} [/mm]

zunächst

[mm] (1+i)^{2}=1+2i+i^{2}=2i [/mm]

jetzt

[mm] (2i)^{10} [/mm]

=1024*(-1)=-1024

[mm] 2^{10} [/mm] sollte kein Problem sein

[mm] i^{10}=-1 [/mm] bedenke [mm] i^{2}=-1 [/mm]

[mm] i^{10}=-1*(-1)*(-1)*(-1)*(-1)=-1 [/mm]

Steffi


Bezug
                                                                                                                
Bezug
Analysis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Mo 31.10.2011
Autor: Elektro21

Gut dann wäre i^20 = 1

Aber was müsste ich jetzt machen?

Bezug
                                                                                                                        
Bezug
Analysis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:10 Mo 31.10.2011
Autor: Steffi21

Hallo, sicherlich ist [mm] i^{20}=1 [/mm] das brauchst du aber nicht,

nocheinmal, laut Potenzgesetz hast du den Exponent 20 zerlegt in 2*10, zunächst wir [mm] (1+i)^{2}=2i [/mm] berechnet, dann [mm] (2i)^{10}, [/mm] das Ergebnis [mm] (1+i)^{20}=-1024 [/mm] steht doch schon in der letzten Antwort

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de