www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Anfangswertproblem
Anfangswertproblem < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Mo 11.09.2017
Autor: Ice-Man

Aufgabe
Überführen Sie mittels Laplace-Transformation das Anfangswertproblem

y''+4y'+4y=5sin(t)

y(0)=0
y'(0)=-1

in den Bildbereich und berechnen Sie die Bildfunktion der Lösungsfunktion.

Hallo,

ich habe bitte eine Frage zu der Problematik.
Aus diesem Grund würde ich einfach mal meinen Rechenweg posten.

[mm] s^{2}Y(s)+1+4sY(s)+4Y(s)=\bruch{5}{s^{2}+1} [/mm]

[mm] Y(s)=\bruch{-s^{2}+6}{(s^{2}+1)(s^{2}+4s+4)} [/mm]

Ist das erst einmal korrekt?

        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:50 Mo 11.09.2017
Autor: derbierbaron

Hallo,

> $ [mm] s^{2}Y(s)+1+4sY(s)+4Y(s)=\bruch{5}{s^{2}+1} [/mm] $

zu

> $ [mm] Y(s)=\bruch{-s^{2}+6}{(s^{2}+1)(s^{2}+4s+4)} [/mm] $

ist nicht richtig

Gruss
DBb

Bezug
                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:47 Di 12.09.2017
Autor: Ice-Man

Zuerst einmal vielen Dank.
Ich habe da wirklich einen Fehler gemacht.

[mm] s^{2}Y(s)+1+4sY(s)+4Y(s)=\bruch{5}{s^{2}+1} [/mm]

Das sollte doch stimmen, oder?

[mm] Y(s)[s^{2}+4s+4]+1=\bruch{5}{s^{2}+1} [/mm]

[mm] Y(s)[s^{2}+4s+4]=\bruch{5}{s^{2}+1}-1 [/mm]

[mm] Y(s)[s^{2}+4s+4]=\bruch{5}{s^{2}+1}-\bruch{s^{2}+1}{s^{2}+1} [/mm]

[mm] Y(s)[s^{2}+4s+4]=\bruch{5-s^{2}-1}{s^{2}+1} [/mm]

[mm] Y(s)[s^{2}+4s+4]=\bruch{-s^{2}+4}{s^{2}+1} [/mm]

[mm] Y(s)=\bruch{-s^{2}+4}{(s^{2}+1)(s^{2}+4s+4)} [/mm]

[mm] Y(s)=\bruch{-s^{2}+4}{(s^{2}+1)(s+2)(s+2)} [/mm]

Bezug
                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:51 Di 12.09.2017
Autor: fred97


> Zuerst einmal vielen Dank.
>  Ich habe da wirklich einen Fehler gemacht.
>
> [mm]s^{2}Y(s)+1+4sY(s)+4Y(s)=\bruch{5}{s^{2}+1}[/mm]
>  
> Das sollte doch stimmen, oder?
>  
> [mm]Y(s)[s^{2}+4s+4]+1=\bruch{5}{s^{2}+1}[/mm]
>  
> [mm]Y(s)[s^{2}+4s+4]=\bruch{5}{s^{2}+1}-1[/mm]
>  
> [mm]Y(s)[s^{2}+4s+4]=\bruch{5}{s^{2}+1}-\bruch{s^{2}+1}{s^{2}+1}[/mm]
>  
> [mm]Y(s)[s^{2}+4s+4]=\bruch{5-s^{2}-1}{s^{2}+1}[/mm]
>  
> [mm]Y(s)[s^{2}+4s+4]=\bruch{-s^{2}+4}{s^{2}+1}[/mm]
>  
> [mm]Y(s)=\bruch{-s^{2}+4}{(s^{2}+1)(s^{2}+4s+4)}[/mm]
>  
> [mm]Y(s)=\bruch{-s^{2}+4}{(s^{2}+1)(s+2)(s+2)}[/mm]  

Das stimmt. Du kannst noch kürzen, denn [mm] $-s^2+4=(s+2)(-s+2)$. [/mm]




Bezug
                                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:12 Di 12.09.2017
Autor: Ice-Man

Sorry, aber das mit dem kürzen versteh ich gerade leider nicht so richtig.

Denn im Nenner steht doch (s+2)

Wie bekomme ich denn da den Vorzeichenwechsel hin?

Bezug
                                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Di 12.09.2017
Autor: fred97

Mühsam .....

$ [mm] Y(s)=\bruch{-s^{2}+4}{(s^{2}+1)(s+2)(s+2)}= \bruch{(s+2)(-s+2)}{(s^{2}+1)(s+2)(s+2)}= \bruch{-s+2}{(s^{2}+1)(s+2)}$ [/mm]

Bezug
                                                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:30 Di 12.09.2017
Autor: Ice-Man

Stimmt, das habe ich leider erst auf den 2.Blick gesehen.

Also könnte ich meinen Lösungsansatz wie folgt beschreiben..

[mm] \bruch{A}{s^{2}+1}+\bruch{B}{s+2} [/mm]

?

Nur da erhalte ich ein Problem.


[mm] \bruch{A}{s^{2}+1}+\bruch{B}{s+2}=\bruch{-s+2}{(s^{2}+1)(s+2)} [/mm]

[mm] A(s+2)+B(s^{2}+1)=-s+2 [/mm]

(für [mm] s^{2}) [/mm]  B=0

(für [mm] s^{1}) [/mm] A=-1

(für [mm] s^{0}) [/mm] 2A+B=2

Das stimmt ja nicht ganz...



Bezug
                                                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Di 12.09.2017
Autor: Steffi21

Hallo

[mm] \bruch{Bs+C}{s^2+1}+\bruch{A}{s+2}=\bruch{-s+2}{(s^2+1)*(s+2)} [/mm]

Steffi

Bezug
                                                                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Di 12.09.2017
Autor: Ice-Man

Ok, ganz vielen Dank erst einmal.

Also

[mm] \bruch{Bs+C}{s^{2}+1}+\bruch{A}{s+2}=\bruch{-s+2}{(s^{2}+1)(s+2)} [/mm]

[mm] \bruch{(Bs+C)(s+2)+A(s^{2}+1)}{(s^{2}+1)(s+2)}=\bruch{-s+2}{(s^{2}+1)(s+2)} [/mm]

[mm] As^{2}+A+Bs^{2}+2Bs+Cs+2C=-s+2 [/mm]

(für [mm] s^{2}) [/mm] A+B=0

(für [mm] s^{1}) [/mm] 2B+C=-1

(für [mm] s^{0}) [/mm] A+2C=2

[mm] A=\bruch{4}{5} [/mm]

[mm] B=-\bruch{4}{5} [/mm]

[mm] C=\bruch{3}{5} [/mm]

Bezug
                                                                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 05:35 Mi 13.09.2017
Autor: fred97


> Ok, ganz vielen Dank erst einmal.
>  
> Also
>
> [mm]\bruch{Bs+C}{s^{2}+1}+\bruch{A}{s+2}=\bruch{-s+2}{(s^{2}+1)(s+2)}[/mm]
>  
> [mm]\bruch{(Bs+C)(s+2)+A(s^{2}+1)}{(s^{2}+1)(s+2)}=\bruch{-s+2}{(s^{2}+1)(s+2)}[/mm]
>  
> [mm]As^{2}+A+Bs^{2}+2Bs+Cs+2C=-s+2[/mm]
>  
> (für [mm]s^{2})[/mm] A+B=0
>  
> (für [mm]s^{1})[/mm] 2B+C=-1
>  
> (für [mm]s^{0})[/mm] A+2C=2
>  
> [mm]A=\bruch{4}{5}[/mm]
>  
> [mm]B=-\bruch{4}{5}[/mm]
>  
> [mm]C=\bruch{3}{5}[/mm]  


Alles richtig




Bezug
                                                                                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Mi 13.09.2017
Autor: Ice-Man

Also bedeutet das...

[mm] =\bruch{\bruch{4}{5}}{s+2}+\bruch{-(\bruch{4}{5})s+\bruch{3}{5}}{(s^{2}+1)} [/mm]

ist die Antwort?


Bezug
                                                                                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Mi 13.09.2017
Autor: chrisno


> Also bedeutet das...
>  
> [mm]=\bruch{\bruch{4}{5}}{s+2}+\bruch{-(\bruch{4}{5})s+\bruch{3}{5}}{(s^{2}+1)}[/mm]
>  
> ist die Antwort?
>  

ja
nun meine Kritik an Deinem Beiträgen:
Du machst es mir unnötig schwer. Ich muss ein zweites Fenster aufmachen und in dem durch den Thread scrollen. Das liegt daran, dass Du den Term vor dem Gleichheitszeichen weggelassen hast. Dazu noch die Werte von A, B und C, dann wäre deutlich einfacher, das zu kontrollieren.


Bezug
                                                                
Bezug
Anfangswertproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Mi 13.09.2017
Autor: Ice-Man

Ich habe dann bitte noch eine Frage zu den Variabeln.
Denn leider ist diese Thematik schon ein wenig länger her.

Woher weis ich das ich im ersten Bruch mit Bs+C rechnen muss und im zweiten Bruch nur mit A?

Ich würde mir das so erklären weil ich im Nenner des ersten Bruchs eine Quadratische Gleichung habe.

Aber ich bin mir leider nicht sicher.

Bezug
                                                                        
Bezug
Anfangswertproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 09:24 Mi 13.09.2017
Autor: chrisno


> Ich habe dann bitte noch eine Frage zu den Variabeln.
> Denn leider ist diese Thematik schon ein wenig länger
> her.
>  
> Woher weis ich das ich im ersten Bruch mit Bs+C rechnen
> muss und im zweiten Bruch nur mit A?
>  
> Ich würde mir das so erklären weil ich im Nenner des
> ersten Bruchs eine Quadratische Gleichung habe.
>  
> Aber ich bin mir leider nicht sicher.

Der Begriff Gleichung für einen Term im Nenner ist nicht richtig. Ansonsten aber liegst Du richtig:
bei
https://de.wikipedia.org/wiki/Partialbruchzerlegung
steht das in der Einleitung, also noch vor dem Inhaltsverzeichnis.

Bezug
                                                                                
Bezug
Anfangswertproblem: viel näher
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Mi 13.09.2017
Autor: Herby

Hi Chris,

> > Ich habe dann bitte noch eine Frage zu den Variabeln.
> > Denn leider ist diese Thematik schon ein wenig länger
> > her.
>  >  
> > Woher weis ich das ich im ersten Bruch mit Bs+C rechnen
> > muss und im zweiten Bruch nur mit A?
>  >  
> > Ich würde mir das so erklären weil ich im Nenner des
> > ersten Bruchs eine Quadratische Gleichung habe.
>  >  
> > Aber ich bin mir leider nicht sicher.
> Der Begriff Gleichung für einen Term im Nenner ist nicht
> richtig. Ansonsten aber liegst Du richtig:
>  bei
>  https://de.wikipedia.org/wiki/Partialbruchzerlegung
>  steht das in der Einleitung, also noch vor dem
> Inhaltsverzeichnis.

Warum so weit weglaufen, wenn wir schon einmal im Matheraum sind :-)

[guckstduhier]   MBPartialbruchzerlegung


Viele Grüße
[Dateianhang nicht öffentlich]  Herby

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de