www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Bestimmung Parabelgleichung
Bestimmung Parabelgleichung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung Parabelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:17 Do 27.11.2008
Autor: blck

Aufgabe
Finde die Parabelgelichung! A(3|6) B(-3|6) C(6|9)

Hallo malwieder,
hoffe dies ist das richtig Forum:
Also nun zu meiner Frage:
Aus den oben geg. Punkten soll ich die Parabellgleichung finden.
Soweit so gut, die Punkte also in die Normalform F(x) = ax²+bx+c
Daraus ergebn sich folgende drei Gleichungen
1) 6 = 9a + 3b + c
2) 6 = 9a - 3b + c
3) 9 = 36a + 6b + c

So nun habe ich die zweite minus der ersten genommen und komme so auf:
6b = 0 |:6
b = 0

So meine Frage ist nun, wie ich weitermachen soll, denn ich kriege z.B. für c anstatt einer Zahl 6 - 9a raus.

Hoffe ihr könnt mir helfen,
MfG Blck

        
Bezug
Bestimmung Parabelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Do 27.11.2008
Autor: Al-Chwarizmi


> Finde die Parabelgelichung! A(3|6) B(-3|6) C(6|9)
>  Hallo malwieder,
>  hoffe dies ist das richtig Forum:
>  Also nun zu meiner Frage:
> Aus den oben geg. Punkten soll ich die Parabellgleichung
> finden.
>  Soweit so gut, die Punkte also in die Normalform F(x) =
> ax²+bx+c
>  Daraus ergebn sich folgende drei Gleichungen
>  1) 6 = 9a + 3b + c
>  2) 6 = 9a - 3b + c
>  3) 9 = 36a + 6b + c
>  
> So nun habe ich die zweite minus der ersten genommen und
> komme so auf:
>  6b = 0 |:6
>  b = 0
>  
> So meine Frage ist nun, wie ich weitermachen soll, denn ich
> kriege z.B. für c anstatt einer Zahl 6 - 9a raus.


Das ist mal eine Gleichung für die noch
unbekannten a und c:

          c=6-9a

Jetzt brauchst du einfach noch eine Gleichung
für a und c, ohne b. Die ist leicht zu kriegen und
bildet zusammen mit der ersten Gleichung ein
einfaches Gleichungssystem.

LG

Bezug
                
Bezug
Bestimmung Parabelgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Do 27.11.2008
Autor: blck

Hallo,
danke für deine Antwort.
Das Entscheidene ist, dass ich in dem Moment für a 3/27 bekommen würde.
Nun sähe meine Parabelgleichung aber wie folgt aus:
9/27a²+0x(warja b)+6-9a

MfG Blck

Bezug
                        
Bezug
Bestimmung Parabelgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Do 27.11.2008
Autor: Steffi21

Hallo,

[mm] a=\bruch{3}{27}=\bruch{1}{9} [/mm] ist korrekt, somit haben wir schon zwei Variablen a und b, uns fehlt doch aber noch c,

c=6-9a

[mm] c=6-9*\bruch{1}{9} [/mm] du kannst doch a einsetzen und ausrechnen, wir kennen doch a!!

c= ...

Steffi

Bezug
                                
Bezug
Bestimmung Parabelgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:45 Do 27.11.2008
Autor: blck

Autsch,
Jetzt wo du's schreibst :D

Vielen Dank,
MfG Blck

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de