www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Binomialverteilung
Binomialverteilung < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Binomialverteilung: Wahrscheinlichkeit bestimmen
Status: (Frage) beantwortet Status 
Datum: 21:33 Do 14.12.2017
Autor: Pacapear

Aufgabe
Eine Firma stellt Sicherungen mit einer Ausschussquote von 5% her. Der Produktion werden 50 Sicherungen zu Prüfzwecken entnommen. Bestimmen Sie die Wahrscheinlichkeit, dass die letzten drei Sicherungen defekt sind.

Hallo zusammen.

Ich habe mir bei dieser Aufgabe überlegt, dass ich die Wahrscheinlichkeit dafür berechnen soll, dass die 48., die 49., und die 50. entnommene Sicherung defekt ist, also $P(48 [mm] \le [/mm] X [mm] \le [/mm] 50)$.

Dann habe ich mir überlegt, dass $P(48 [mm] \le [/mm] X [mm] \le [/mm] 50) = P(X [mm] \le [/mm] 50) - P(X [mm] \le [/mm] 47)$.

Wenn ich aber $P(X [mm] \le [/mm] 50)$ und $P(X [mm] \le [/mm] 47)$ mit dem Taschenrechner berechne (mit n=50 und p=0,05), kommt bei beiden Wahrscheinlichkeiten 1 raus. Das verstehe ich nicht [haee]

Weiß jemand, was ich falsch gemacht habe?

LG, Nadine

        
Bezug
Binomialverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:55 Do 14.12.2017
Autor: Diophant

Hallo,

dein Ansatz per Binomialverteilung ist hier falsch.  (da eine Reihenfolge vorgegeben ist).

Jetzt kommt es ein bisschen darauf an, wie man die Aufgabe versteht. Nimmt man es wörtlich, dann ist es so, wie HJkweseleit in seiner Mitteilung geschrieben hat: man betrachtet nur die letzten drei Sicherungen und interessiert sich für die anderen überhaupt nicht. Dann ist

[mm] P=0.5^3 [/mm]

Man kann hier versucht sein, das anders zu interpretieren (vermutlich hast du dem auch Vorschub geleistet, weil du wahrscheinlich nicht alle Aufgabenteile gepostet hast, was ja auch völlig ok ist). Man kann es also so verstehen, dass die ersten 47 Sicherungen intakt sind und die letzten drei defekt. Dann wäre mein gestriger Tipp

[mm] P=0.95^{47}*0.05^3 [/mm]

die richtige Rechnung.

Wobei: je länger ich darüber nachdenke, desto mehr bin ich geneigt, die Interpretation von HJkweseleit als korrekt anzunehmen (zumindest, so lange ich den kompletten Aufgabentext nicht kenne).

Zu deinem Taschenrechner-Problem: gerade für sehr kleine oder sehr große p liegen viele Werte der Binomialverteilung sehr nahe bei 0 bzw. 1.

Desweiteren zeigen die eingebauten Verteilungsfunktionen oft recht wenig Nachkommastellen an, so dass eben viele Ergebnisse auf 0 oder 1 gerundet werden, die der TR eigentlich noch genauer anzeigen könnte.


Gruß, Diophant

Bezug
                
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:55 Fr 15.12.2017
Autor: HJKweseleit

Es ist noch viel einfacher:

Ob die 48., 49. und 50. Sicherung defekt ist, hängt überhaupt nicht von den Vorergebnissen der 1. - 47. Sicherung ab (deshalb: Binomialverteilung). Es steht nicht  in der Aufgabe, dass die ersten 47 Sicherungen alle heil gewesen sein sollen.
Daher ist die W. einfach nur [mm] 0,05^3. [/mm]

Bezug
                        
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Fr 15.12.2017
Autor: Diophant

Hallo,

> Es ist noch viel einfacher:

>

> Ob die 48., 49. und 50. Sicherung defekt ist, hängt
> überhaupt nicht von den Vorergebnissen der 1. - 47.
> Sicherung ab (deshalb: Binomialverteilung). Es steht nicht
> in der Aufgabe, dass die ersten 47 Sicherungen alle heil
> gewesen sein sollen.
> Daher ist die W. einfach nur [mm]0,05^3.[/mm]

Ja, streng genommen hast du recht. Ich ergänze meine Antwort darauf hin mal noch.

Gruß, Diophant

Bezug
                        
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:53 So 19.08.2018
Autor: donp

Hallo,

> Ob die 48., 49. und 50. Sicherung defekt ist, hängt
> überhaupt nicht von den Vorergebnissen der 1. - 47.
> Sicherung ab (Binomialverteilung). Es steht nicht  
> in der Aufgabe, dass die ersten 47 Sicherungen alle heil
> gewesen sein sollen.
>  Daher ist die W. einfach nur [mm]0,05^3.[/mm]  

Stimmt: Es steht nicht direkt in der Aufgabe, dass genau 3 defekte Sicherungen dabei sind. Bei 5% Ausschuss können auch zufällig alle 50 in Ordnung sein oder mehr als 3 defekt. Dann ist die Lösung einfach nur [mm]0,05^3[/mm].

Falls die Aufgabe wirklich so gemeint ist, dann ist sie darauf angelegt zu verwirren, denn sowohl die gegebene Stichprobengröße von 50 wie auch die Formulierung "die letzten 3" wäre unnötig. Es sollte dann besser heißen "eine beliebige Stichprobe" und "3 defekte in Folge".

Die Aufgabe ist vermutlich so gemeint:

Aus den gegebenen 5% Ausschuss von 50 folgt, dass genau [mm]50*0,05=2,5\approx3[/mm] defekt sind. Wenn es die letzten 3 sind, müssen die ersten 47 in Ordnung  sein. Es geht also darum, wo genau in der Prüfserie die defekten 3 zu finden sind.

Die W'keit, dass die letzten 3 defekt sind, ist dann wesentlich kleiner als [mm]0,05^3[/mm]. Viel öfter wird man sie woanders finden als am äußersten Ende der Prüfserie, und man wird auch nicht zwingend alle drei in Folge finden.

Gruß, Don

Bezug
                
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 So 17.12.2017
Autor: Pacapear

Hallo!

> Hallo,
>  
> dein Ansatz per Binomialverteilung ist hier falsch.  (da
> eine Reihenfolge vorgegeben ist).
>  
> Jetzt kommt es ein bisschen darauf an, wie man die Aufgabe
> versteht. Nimmt man es wörtlich, dann ist es so, wie
> HJkweseleit in seiner Mitteilung geschrieben hat: man
> betrachtet nur die letzten drei Sicherungen und
> interessiert sich für die anderen überhaupt nicht. Dann
> ist
>  
> [mm]P=0.5^3[/mm]
>  
> Man kann hier versucht sein, das anders zu interpretieren
> (vermutlich hast du dem auch Vorschub geleistet, weil du
> wahrscheinlich nicht alle Aufgabenteile gepostet hast, was
> ja auch völlig ok ist). Man kann es also so verstehen,
> dass die ersten 47 Sicherungen intakt sind und die letzten
> drei defekt. Dann wäre mein gestriger Tipp
>  
> [mm]P=0.95^{47}*0.05^3[/mm]
>  
> die richtige Rechnung.

Genau, ich hatte nur die letzte Teilaufgabe gepostet. Bei den vorherigen Teilaufgaben war die Anwendung der Binomialverteilung richtig, und die Aufgabe hatte auch die Binomialverteilung als Überschrift, daher dachte ich, dass dann hier auch Binomialverteilung verwendet werden musste.

VG, Nadine

Bezug
                        
Bezug
Binomialverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:17 So 17.12.2017
Autor: abakus

"daher dachte ich, dass dann hier auch Binomialverteilung verwendet werden musste."

Muss sie doch auch!
Nur, dass es sich um eine Bernoulli-Kette der Länge 3 (und nicht der Länge 50) handelt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 04m 7. HJKweseleit
UAnaR1FolgReih/Mehrere Grenzwerte Polynom
Status vor 6h 59m 1. Riesenradfahrrad
SPhy/KETTERLE-Versuch
Status vor 7h 13m 5. Riesenradfahrrad
Atom- und Kernphysik/Bragg-Reflexion
Status vor 8h 59m 2. fred97
UAnaR1FunkStetig/Delta-Epsilon Kriterium
Status vor 14h 35m 2. hippias
Algebra/Isomorph
^ Seitenanfang ^
www.vorhilfe.de