www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Brüche vereinfachen
Brüche vereinfachen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Brüche vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Do 25.09.2008
Autor: itse

Aufgabe
Vereinfachen Sie die folgenden Ausdrücke und geben Sie an, welche Werte die Variablen nicht annehmen dürfen:

1. [mm] \bruch{3x+y}{2x²+2xy} [/mm] - [mm] \bruch{x²+y²}{2x²+2xy²} [/mm] + [mm] \bruch{2x-5y}{4xy+4y²} [/mm]

2. [mm] \bruch{\bruch{x+y}{x-y} - \bruch{x²+y²}{x²-y²}}{\bruch{x+y}{x-y} - \bruch{x-y}{x+y}} [/mm]

Hallo Zusammen.

ich habe folgendes bis jetzt:

1. [mm] \bruch{3x+y}{2x²+2xy} [/mm] - [mm] \bruch{x²+y²}{2x²+2xy²} [/mm] + [mm] \bruch{2x-5y}{4xy+4y²}; [/mm] Hauptnenner ist 4x²y+4xy²

somit ergibt sich:

[mm] \bruch{(3x+y)(2y)}{(2x²+2xy)(2y)} [/mm] - [mm] \bruch{(x²+y²)(2)}{(2x²+2xy²)(2)} [/mm] + [mm] \bruch{(2x-5y)(x)}{(4xy+4y²)(2)} [/mm]

= [mm] \bruch{6xy+2y²-2x²-2y²+2x²-5xy}{4x²y+2xy²} [/mm] = [mm] \bruch{xy}{4(x²y+xy²)}, [/mm] wie kann ich nun weiter kürzen?

Durch Summe im Nenner weiß ich nicht mehr weiter.


2. [mm] \bruch{\bruch{x+y}{x-y} - \bruch{x²+y²}{x²-y²}}{\bruch{x+y}{x-y} - \bruch{x-y}{x+y}} [/mm]

=  [mm] \bruch{\bruch{(x+y)(x+y)}{(x-y)(x+y)} - \bruch{x²+y²}{x²-y²}}{\bruch{(x+y)(x+y)}{(x-y)(x+y)} - \bruch{(x-y=(x-y)}{(x+y)(x-y)}} [/mm]

= [mm] \bruch{\bruch{x²+2xy+y²-(x²+y²)}{x²-y²}}{\bruch{x²+2xy+y²-(x²-2xy+y²)}{x²-y²}} [/mm]

= [mm] \bruch{\bruch{x²+2xy+y²-x²-y²}{x²-y²}}{\bruch{x²+2xy+y²-x²+2xy-y²}{x²-y²}} [/mm]

= [mm] \bruch{\bruch{2xy}{x²-y²}}{\bruch{4xy}{x²-y²}} [/mm]

= [mm] \bruch{2xy}{x²-y²} \cdot{} \bruch{x²-y²}{4xy} [/mm] = [mm] \bruch{(2\blue{xy})(\red{x²-y²})}{(\red{x²-y²})(4\blue{xy})} [/mm] = [mm] \bruch{2}{4} [/mm] = [mm] \bruch{1}{2} [/mm]

Damit die Nenner der "kleinen" Brüche nicht Null werden, muss gelten x [mm] \ne [/mm] y und x [mm] \ne [/mm] -y, beim "großen" Nenner, muss x und y [mm] \ne [/mm] 0 sein.

Gruß
itse

        
Bezug
Brüche vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Do 25.09.2008
Autor: Steffi21

Hallo, ich habe keinen Fehler gefunden, bei der 1. Aufgabe kannst du im Nenner noch xy ausklammmern und kürzen, [mm] \bruch{1}{4x+4y} [/mm]
Steffi

Bezug
        
Bezug
Brüche vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Do 25.09.2008
Autor: itse

Hallo Zusammen.

wenn ich dies:

> 2. [mm]\bruch{\bruch{x+y}{x-y} - \bruch{x²+y²}{x²-y²}}{\bruch{x+y}{x-y} - \bruch{x-y}{x+y}}[/mm]

gleich am Anfang so umforme, dass der Doppelbruch verschwindet:

[mm] \left(\bruch{x+y}{x-y} - \bruch{x²+y²}{x²-y²} \right) \cdot{} \left(\bruch{x-y}{x+y} - \bruch{x+y}{x-y} \right) [/mm]

komme ich auf etwas anderes und zwar:

[mm] \bruch{2xy}{x²-y²} \cdot{} \bruch{-4xy}{x²-y²} [/mm]

Eigentlich ist es doch egal, ob man den Doppelbruch am Anfang oder Ende auflöst? Jedoch bekomme ich das falsche Ergebnis, woran liegt das?

Vielen Dank im Voraus
itse



Bezug
                
Bezug
Brüche vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Do 25.09.2008
Autor: M.Rex

Hallo

Aber aber... [lehrer]

Ich vermute mal, du hast beim Bruchrechnen gerade nen "dicken Dreher" drin

[mm] \bruch{\bruch{x+y}{x-y}-\bruch{x²+y²}{x²-y²}}{\bruch{x+y}{x-y}-\bruch{x-y}{x+y}}\red{\ne}\left(\bruch{x+y}{x-y}-\bruch{x²+y²}{x²-y²}\right)\cdot{}\left(\bruch{x-y}{x+y}-\bruch{x+y}{x-y}\right) [/mm]

Denn [mm] \left(\bruch{x-y}{x+y}-\bruch{x+y}{x-y}\right) [/mm] ist nicht der Kehrwert von [mm] \bruch{x+y}{x-y}-\bruch{x-y}{x+y} [/mm]

[mm] \bruch{1}{2}-\bruch{1}{3} [/mm] hat ja auch nicht den Kehrwert 2-3....

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de