www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 5-7" - Doppelbrüche
Doppelbrüche < Klassen 5-7 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Doppelbrüche: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:35 So 26.11.2006
Autor: sophal-92

Aufgabe
k+1
____
1+2
   __
  k-1

Guten Abend!
Suche verzweifelt nach der richtigen Lösung. Wer kann helfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Doppelbrüche: nicht eindeutig
Status: (Antwort) fertig Status 
Datum: 17:44 So 26.11.2006
Autor: Loddar

Hallo sophal,

[willkommenmr] !!


Leider ist Deine Aufgabenstellung nicht eindeutig erkennbar.

Meinst du hier: [mm] $\bruch{k+1}{1+\bruch{2}{k-1}}$ [/mm] ??


Erweitere diesen Bruch doch zunächst mit $(k-1)_$ und schon ist der Doppelbruch nur noch ein "einfacher" Bruch.


Gruß
Loddar


Bezug
                
Bezug
Doppelbrüche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 So 26.11.2006
Autor: sophal-92

Ergebnis sollte k-1 sein. Ich komm nicht drauf. Wie ist der Rechengang?

Sophal

Bezug
                        
Bezug
Doppelbrüche: Lösung
Status: (Antwort) fertig Status 
Datum: 19:28 So 26.11.2006
Autor: Steffi21

Lösen wir es:
[mm] \bruch{k+1}{1+\bruch{2}{k-1}}=\bruch{k+1}{\bruch{1(k-1)}{k-1}+\bruch{2}{k-1}}= [/mm]

[mm] \bruch{k+1}{\bruch{k-1}{k-1}+\bruch{2}{k-1}}=\bruch{k+1}{\bruch{k-1+2}{k-1}}= [/mm]

[mm] \bruch{k+1}{\bruch{k+1}{k-1}}=\bruch{k+1}{1}:\bruch{k+1}{k-1}= [/mm]

[mm] \bruch{k+1}{1}*\bruch{k-1}{k+1}=k-1 [/mm]

der Term k+1 wird gekürzt,
Steffi


Bezug
                        
Bezug
Doppelbrüche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:51 So 26.11.2006
Autor: Lusbueb33

Ich gehe jetzt mal davon aus, dass du als Aufg. folgendes Gebilde meintest: x = [mm] \bruch{k+1}{1+\bruch{2}{k-1}} [/mm]

Die Lösung ist ja wie du offenbar bereits weist: x = k-1

Auf diese Lösung kommt man durch folgende Rechenschritte(Geht wahrscheinlich auch einfacher...):

[mm] \bruch{k+1}{1+\bruch{2}{k-1}} [/mm] = [mm] \bruch{k+1}{\bruch{k-1+2}{k-1}} [/mm] = [mm] \bruch{k+1}{1} [/mm] * [mm] \bruch{k-1}{k-1+2} [/mm] = [mm] \bruch{k^{2}-1}{k+1} [/mm] = [mm] \bruch{(k+1)(k-1)}{(k+1)} [/mm] = k-1

1. Nenner mit (k-1) erweitern
2. Den Zähler mit dem Kehrwert des Nenners multiplizieren
3. [mm] k^{2}-1 [/mm] entspricht dem 3. binomischen Spezielfall. Deshalb [mm] k^{2}-1 [/mm] mit
    (k+1)(k-1) ersetzen.
4. Sowohl im Nenner als auch im Zähler steht ein Produkt. (k+1) steht
    sowohl im Nenner als auch im Zähler und kann deshalb weggekürzt
    werden.
5. Die Lösung ist k-1!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 5-7"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de