www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Eigenschaften von R
Eigenschaften von R < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften von R: Dezimalbruch
Status: (Frage) beantwortet Status 
Datum: 23:31 Mi 19.10.2011
Autor: theresetom

Aufgabe
Sei x [mm] \in \IR \exists [/mm] n [mm] \in \IZ [/mm] so dass x = n +s mit 0 [mm] \le [/mm] s [mm] \le [/mm] 1.
S=0,a1 a2 a3 a4 .... ai [mm] \in [/mm] {0,1,...9}

bedeutet
a1/10 [mm] \le [/mm] x < (a1 +1) / 10

a2/100 [mm] \le [/mm] x - a1/10 < (a2 + 1) [mm] \100 [/mm]

a1/10 + a2/100 [mm] \le [/mm] x < a1/10 + (a2 + 1)/ 100

mir sind die brüche vom Verständnis nicht klar!
a1/10 [mm] \le [/mm] x < (a1 +1) / 10
Für a1 kann man doch nur zahlen von 0-9 einsetzen. wieso dann kleiner-gleich? dass es kleinergleich ist müsste ich doch schon 10 einsetzen?
z.B 9/10 < 1 < 9/10 +1/10
warum jetzt  + 1/10 ?

Es ist für mich total unlogisch. verstehe das nicht!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenschaften von R: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:42 Do 20.10.2011
Autor: meili

Hallo,

> Sei x [mm]\in \IR \exists[/mm] n [mm]\in \IZ[/mm] so dass x = n +s mit 0 [mm]\le[/mm]
> s [mm]\le[/mm] 1.
>  S=0,a1 a2 a3 a4 .... ai [mm]\in[/mm] {0,1,...9}
>  
> bedeutet
>  a1/10 [mm]\le[/mm] x < (a1 +1) / 10
>  
> a2/100 [mm]\le[/mm] x - a1/10 < (a2 + 1) [mm]\100[/mm]
>  
> a1/10 + a2/100 [mm]\le[/mm] x < a1/10 + (a2 + 1)/ 100

Müßte es nicht heißen:
a1/10 [mm]\le[/mm] s < (a1 +1) / 10  
a2/100 [mm]\le[/mm] s - a1/10 < (a2 + 1) [mm]\100[/mm]
a1/10 + a2/100 [mm]\le[/mm] s < a1/10 + (a2 + 1)/ 100
Da es für x einfache Gegenbeispiele gibt.

>  mir sind die brüche vom Verständnis nicht klar!
>  a1/10 [mm]\le[/mm] x < (a1 +1) / 10
>  Für a1 kann man doch nur zahlen von 0-9 einsetzen. wieso
> dann kleiner-gleich? dass es kleinergleich ist müsste ich
> doch schon 10 einsetzen?
>  z.B 9/10 < 1 < 9/10 +1/10
>  warum jetzt  + 1/10 ?
>  
> Es ist für mich total unlogisch. verstehe das nicht!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
        
Bezug
Eigenschaften von R: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Do 20.10.2011
Autor: angela.h.b.


> Sei x [mm][mm] \in \IR. [/mm]

Es gibt ein [mm]\in \IZ[/mm] so dass x = n +s mit 0 [mm]\le[/mm] s [mm]\red{<}[/mm] 1.

>  [mm] s=0,a_1 a_2 a_3 a_4 [/mm] .... [mm] a_i[/mm]  [mm]\in[/mm] {0,1,...9}
>  
> bedeutet
>  [mm] a_1/10[/mm]  [mm]\le[/mm] [mm] \red{s} [/mm] < [mm] (a_1 [/mm] +1) / 10
>  
> [mm] a_2/100[/mm]  [mm]\le[/mm] [mm] \red{s} [/mm] - [mm] a_1/10 [/mm] < [mm] (a_2 [/mm] + 1)/ [mm]100[/mm]
>  
> [mm] a_1/10 [/mm] + [mm] a_2/100[/mm]  [mm]\le[/mm] [mm] \red{s} [/mm] < [mm] a_1/10 [/mm] + [mm] (a_2 [/mm] + 1)/ 100


>  mir sind die brüche vom Verständnis nicht klar!

Hallo,

[willkommenmr].

Es sollte wohl eher so heißen, wie ich es jetzt oben korrigiert habe.

In dem, was Du zitierst, wird also die Bedeutung der Schreibweise [mm] 0,a_1a_2a_3... [/mm]  mit [mm] a_i \in \{0,1,2,...,9\} [/mm] erklärt.

Schauen wir ein Beispiel an: s=0,1234567.

Da oben steht nun, daß

[mm] \bruch{1}{10}\le [/mm] 0,1234567 [mm] <\bruch{2}{10}, [/mm]

und daß

[mm] \bruch{2}{100}\le 0,1234567-\bruch{1}{10}=0,023456<\bruch{3}{100}. [/mm]

Gruß v. Angela


Bezug
                
Bezug
Eigenschaften von R: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 20.10.2011
Autor: theresetom

Ja jetzt macht das ja viel mehr Sinn. Aber dass sich der professor ber der vorlesung so vertan hat? mhmm, ist seltsam!

ich versteh den unteren teil ncht ganz warum man noch s - a1/10
also die - a1/10 sind mir nicht ganz klar!

Bezug
                        
Bezug
Eigenschaften von R: Antwort
Status: (Antwort) fertig Status 
Datum: 17:51 Do 20.10.2011
Autor: reverend

Hallo theresetom,

schau doch mal Angelas Beispiel an. Im letzten aufgeführten Schritt geht es doch nur noch um die zweite und die folgenden Nachkommastellen. Deswegen muss man die erste Nachkommastelle entfernen, und das tut man hier mit [mm] -\bruch{a_1}{10}=-\bruch{1}{10}. [/mm]

Wenn man, im nächsten Schritt, nur die dritte und die folgenden Nachkommastellen betrachten will, muss man die ersten beiden entfernen, nämlich mit [mm] -\bruch{a_1}{10}-\bruch{a_2}{100}=-\left(\bruch{10a_1}{100}+\bruch{a_2}{100}\right)=-\bruch{12}{100}. [/mm]

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de