www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Exponentialgleichung Summanden
Exponentialgleichung Summanden < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentialgleichung Summanden: Tipp zur Zerlegung von Summand
Status: (Frage) beantwortet Status 
Datum: 23:04 Do 16.04.2015
Autor: IainMBC

Aufgabe
[mm] 2^{x+1}-3*2^x+5*2^{x-1}=48 [/mm]

Guten Abend allerseits,

ich habe das Problem einen Umformungsschritt nachzuvollziehen.
Laut meinem Lehrbuch ist der kleinste der mit x behaftete Summanden in der obigen Gleichung [mm]2^{x-1}[/mm], also werden die anderen beiden wie folgt zerlegt:

[mm]4*2^{x-1}-3*2*2^{x-1}+5*2^{x-1}=48[/mm]

Ich kann nicht nachvollziehen, wie die ersten beiden Summanden mit 2^(x-1) zerlegt wurden. Ich hatte es mit umformen lt. den Potenzgesetzen versucht, aber das gab nicht das selbe Ergebnis. Kann mir jemand sagen, wie der Autor von der obigen Ausgangsgleichung auf diesen ersten Zwischenschritt mit der Zerlegung kommt?

Es soll dabei keine Logarithmusfunktion verwendet werden.

Viele Grüße
Iain

P.S. Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exponentialgleichung Summanden: Antwort
Status: (Antwort) fertig Status 
Datum: 00:32 Fr 17.04.2015
Autor: DieAcht

Hallo Iain und [willkommenmr]


> [mm]2^{x+1}-3*2^x+5*2^{x-1}=48[/mm]
>  Guten Abend allerseits,
>
> ich habe das Problem einen Umformungsschritt
> nachzuvollziehen.
> Laut meinem Lehrbuch ist der kleinste der mit x behaftete
> Summanden in der obigen Gleichung [mm]2^{x-1}[/mm], also werden die
> anderen beiden wie folgt zerlegt:
>
> [mm]4*2^{x-1}-3*2*2^{x-1}+5*2^{x-1}=48[/mm]
>  
> Ich kann nicht nachvollziehen, wie die ersten beiden
> Summanden mit 2^(x-1) zerlegt wurden. Ich hatte es mit
> umformen lt. den Potenzgesetzen versucht, aber das gab
> nicht das selbe Ergebnis. Kann mir jemand sagen, wie der
> Autor von der obigen Ausgangsgleichung auf diesen ersten
> Zwischenschritt mit der Zerlegung kommt?

Es gibt viele Möglichkeiten hier mit den Potenzgesetzen zu
arbeiten. Die meiner Meinung nach passende Darstellung ist

      [mm] 2^{x+1}=2^{x-1+2}=2^{x-1}*2^2=4*2^{x-1}. [/mm]

Ich habe diese Darstellung mit Absicht gewählt, da man hier
das *Ziel* im Exponenten, also [mm] $(x-1)\$, [/mm] sofort erkennt. Das
zweite Problem solltest du nun selbst lösen können.

Du kannst auch mal zur Probe andersrum rechnen. Es ist

      [mm] 4*2^{x-1}=2^2*2^{x-1}=2^{x-1+2}=2^{x+1}. [/mm]

Das hilft dann aber nicht um selbst darauf zu kommen. Hier
dienst es nur als Beweis der Äquivalenz.

(Übrigens: Das *Ziel* muss nicht unbedingt [mm] $(x-1)\$ [/mm] sein. Du
kannst es zur Übung auch mit [mm] $(x+1)\$ [/mm] oder [mm] $x\$ [/mm] probieren. Beim
ziehen des Logarithmus dann aber auf den Definitionsbereich
achten.)

> Es soll dabei keine Logarithmusfunktion verwendet werden.

Richtig. Klammere zunächst [mm] 2^{x-1} [/mm] aus.


Gruß
DieAcht


Bezug
                
Bezug
Exponentialgleichung Summanden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 06:55 Fr 17.04.2015
Autor: IainMBC

Guten Morgen und vielen Dank für den Willkommensgruß.

Damit ich das richtig verstehe.

Weil [mm]2^{x-1}[/mm] der kleinste x behaftete Summand ist, muss ich mir die anderen Exponenten wiefolgt anschauen:

Wie komme ich bei [mm]2^{x-1}[/mm] auf [mm]2^{x+1}[/mm]?
Ich muss also schauen, was der Ergebnis x-1 erzeugt mit Hilfe der Potzenzgesetze. Liege ich da richtig?

Bei dem zweiten Fall wäre es also

[mm]2^1 * 2^{x-1} = 2^{x-1+1}=2^x [/mm]

Habe ich das richtig verstanden?

Viele Grüße
Iain

Bezug
                        
Bezug
Exponentialgleichung Summanden: Antwort
Status: (Antwort) fertig Status 
Datum: 07:07 Fr 17.04.2015
Autor: meili

Hallo Iain,

> Guten Morgen und vielen Dank für den Willkommensgruß.
>  
> Damit ich das richtig verstehe.
>
> Weil [mm]2^{x-1}[/mm] der kleinste x behaftete Summand ist, muss ich
> mir die anderen Exponenten wiefolgt anschauen:
>  
> Wie komme ich bei [mm]2^{x-1}[/mm] auf [mm]2^{x+1}[/mm]?
>  Ich muss also schauen, was der Ergebnis x-1 erzeugt mit
> Hilfe der Potzenzgesetze. Liege ich da richtig?

[ok]

>
> Bei dem zweiten Fall wäre es also
>  
> [mm]2^1 * 2^{x-1} = 2^{x-1+1}=2^x[/mm]

[ok]

>  
> Habe ich das richtig verstanden?

Ja.

>
> Viele Grüße
>  Iain

Gruß
meili

Bezug
                                
Bezug
Exponentialgleichung Summanden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:25 Fr 17.04.2015
Autor: IainMBC

Hallo meili,

vielen Dank!

Grüße
Iain

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de