www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Transformationen" - Faltung zweier Funktionen
Faltung zweier Funktionen < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faltung zweier Funktionen: Frage zu Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:25 So 01.07.2018
Autor: Siebenstein

Aufgabe
x(t) =  xDach

h(t) = [mm] \bruch{t}{T} [/mm] + 3

Hallo,

ich bin gerade an einer Faltungsaufgabe und habe auch die Lösung dazu.

Soweit mir bekannt ist, lautet die Formel


[mm] \integral_{-\infty}^{\infty}{x(t) * h(t-Tau) dTau} [/mm]

Wenn ich das nun anwende:

[mm] \integral_{wert1}^{wert2}{xDach * \bruch{t-Tau}{T} + 3...dTau} [/mm]

???


mein h(t) muss doch zu h(t-Tau) werden und wenn es vorher  [mm] \bruch{t}{T} [/mm] + 3 war, muss es doch anschließend zu [mm] \bruch{t-Tau}{T} [/mm] + 3 werden, oder ?

ansonsten hätte dieses t-Tau ja garkeine funktion/sinn ?

in der Musterlösung wurde für t lediglich Tau eingesetzt und nicht t-Tau

so:

[mm] \integral_{wert1}^{wert2}{xDach * \bruch{Tau}{T} + 3...dTau} [/mm]



grüße siebenstein

        
Bezug
Faltung zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Mo 02.07.2018
Autor: fred97


> x(t) =  xDach

Was meinst Du damit ?  [mm] x(t)=\hat x^{^} [/mm] ? Soll x die Fouriertransformierte einer Funktion sein ?

>
> h(t) = [mm]\bruch{t}{T}[/mm] + 3
>  Hallo,
>  
> ich bin gerade an einer Faltungsaufgabe und habe auch die
> Lösung dazu.
>  
> Soweit mir bekannt ist, lautet die Formel
>  
>
> [mm]\integral_{-\infty}^{\infty}{x(t) * h(t-Tau) dTau}[/mm]

Ja, das ist die Faltung von x und h

[mm]\integral_{-\infty}^{\infty}{x(t) * h(t-\tau) d \tau}[/mm]


>  
> Wenn ich das nun anwende:
>  
> [mm]\integral_{wert1}^{wert2}{xDach * \bruch{t-Tau}{T} + 3...dTau}[/mm]

Was ist wert1 ? wert 2 ???


>  
> ???
>  
>
> mein h(t) muss doch zu h(t-Tau) werden und wenn es vorher  
> [mm]\bruch{t}{T}[/mm] + 3 war, muss es doch anschließend zu
> [mm]\bruch{t-Tau}{T}[/mm] + 3 werden, oder ?

Ja


>  
> ansonsten hätte dieses t-Tau ja garkeine funktion/sinn ?
>  
> in der Musterlösung wurde für t lediglich Tau eingesetzt
> und nicht t-Tau
>  
> so:
>  
> [mm]\integral_{wert1}^{wert2}{xDach * \bruch{Tau}{T} + 3...dTau}[/mm]

Wert1 =? Wert 2= ?

Ohne genauere Angaben über x , wert 1  und wert 2 kann Dir kaum geholfen werden .


>  
>
>
> grüße siebenstein


Bezug
                
Bezug
Faltung zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:39 Mi 04.07.2018
Autor: Siebenstein

danke für deine antwort.

mir geht es eigentlich nur ums grundprinzip.

ich habe http://nt.eit.uni-kl.de/fileadmin/lehre/guet/uebung/faltung.pdf diese anleitung gefunden und dort wird bei den einzelnen fällen nicht  t-Tau in die formel eingesetzt, sondern nur mit Tau gerechnet. Aber wieso ?

Bezug
                        
Bezug
Faltung zweier Funktionen: Integrationsvariable
Status: (Antwort) fertig Status 
Datum: 17:45 Mi 04.07.2018
Autor: Infinit

Hallo siebenstein,
schau Dir noch mal die grundlegende Formel an. Die Integrationsvariable ist [mm] \tau [/mm] und der Versatz [mm] t [/mm] gibt eine Verschiebung an. Analytisch lässt sich dies nicht in einer Gleichung lösen. Du musst für verschiedene Zeitverschiebungen unterschiedliche Gleichungen aufstellen in denen die Integrationsvriable aber immer noch [mm] \tau [/mm] ist.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Faltung zweier Funktionen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:42 Sa 07.07.2018
Autor: Siebenstein

Leuchtet mir ja ein, aber hätte der Herr/Frau in der PDF http://nt.eit.uni-kl.de/fileadmin/lehre/guet/uebung/faltung.pdf


bei bsp. Fall 2 lautet seine Intergration:

y2 (t) = [mm] \integral_{T}^{t-T}{-\bruch{1}{T}*Tau + 3} [/mm] dTau

er hat für t = Tau eingesetzt.

Allerdings hat er doch oben gesagt, dass sein h(t) = h(t-Tau) ist.

Hätte er dann nicht folgendes schreiben müssen:

y2 (t) = [mm] \integral_{T}^{t-T}{-\bruch{1}{T}*(t-Tau) + 3} [/mm] dTau

Grüße Siebenstein

Bezug
                                        
Bezug
Faltung zweier Funktionen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 09.07.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Faltung zweier Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:34 Di 10.07.2018
Autor: Siebenstein

benötige, wenn möglich, noch immer antwort darauf

Bezug
                
Bezug
Faltung zweier Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:32 Mi 11.07.2018
Autor: meili

Hallo Siebenstein,

in der von dir zitierten Anleitung http://nt.eit.uni-kl.de/fileadmin/lehre/guet/uebung/faltung.pdf
wird an einem Beispiel beschrieben, wie man zu der Faltung
$y(t) = [mm] x(t)\*h(t) [/mm] = [mm] h(t)\*x(t) [/mm] = [mm] \integral_{- \infty}^{\infty}{x(\tau)*h(t- \tau) d \tau} [/mm] = [mm] \integral_{- \infty}^{\infty}{h(t)*x(t - \tau) d \tau}$ [/mm] kommt, ohne die uneigentlichen Integrale zu berechnen.

Ob das so geht, weis ich nicht, aber es entspricht der []anschaulichen Deutung bei Wikipedia

3. Schritt sollte zuerst sein, denn da werden die beiden Beispielfunktionen
$x(t)$ (Rechteckfunktion) und $h(t)$ (abschnittsweise) definiert.

Dann 1. Schritt eine Funktion (hier $x(t)$) wird an der Ordinate gespiegelt.

Bei 2. Schritt ist wichtig, dass statt 0 im Ursprung t steht, und daher das gespiegelte x(t)
den Wert [mm] $\hat [/mm] x$ zwischen $t-2T$ und $t-T$ annimmt.

Im 4. Schritt steht [mm] $x(t-\tau)$ [/mm] wird über [mm] $h(\tau)$ [/mm] geschoben,
deshalb ist bei 2. Fall ($2T < t [mm] \le [/mm] 3T$):  [mm] $y_2(t) [/mm] = [mm] \integral_{T}^{t-T}{\hat x\left(3-\bruch{\tau}{T}\right) d \tau}$ [/mm]

Es hat auch den Vorteil, dass kein [mm] $t-\tau$ [/mm] im Integral auftaucht, da $x(t)$ konstant ist.

Gruß
meili








Bezug
                        
Bezug
Faltung zweier Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Sa 14.07.2018
Autor: Siebenstein

danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 14m 2. matux MR Agent
UAnaR1/primitiv rekursive Funktion
Status vor 3h 47m 2. fred97
Ind/starke vollständige Induktion
Status vor 6h 29m 6. fred97
MaßTheo/Bestimmung einer Menge
Status vor 15h 21m 3. nosche
UAnaSon/Delta Funktion vs Intergral
Status vor 1d 0h 49m 2. fred97
UAnaInd/Vollständige Induktion
^ Seitenanfang ^
www.vorhilfe.de