www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Flächeninhalt bestimmen
Flächeninhalt bestimmen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Flächeninhalt bestimmen: Idee
Status: (Frage) beantwortet Status 
Datum: 13:18 Do 01.11.2012
Autor: Kreuzkette

Aufgabe
Geben Sie den Flächeninhalt an, der von der Funktion f(x)=4x+1 und der x-Achse im Intervall von -1 bis 2 eingeschlossen wird.

Hallo erstmal,

da muss ich ganz ehrlich sagen. Da hab ich nicht mal einen Ansatz. Als Tipp stand da noch, man könnte die Stammfunktion zuerst aufstellen.

[mm] F(x)=8x^{2}+x [/mm]

Doch wie geht es weiter?

Liebe Grüße

        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:26 Do 01.11.2012
Autor: M.Rex


> Geben Sie den Flächeninhalt an, der von der Funktion
> f(x)=4x+1 und der x-Achse im Intervall von -1 bis 2
> eingeschlossen wird.
>  Hallo erstmal,
>  
> da muss ich ganz ehrlich sagen. Da hab ich nicht mal einen
> Ansatz. Als Tipp stand da noch, man könnte die
> Stammfunktion zuerst aufstellen.
>  
> [mm]F(x)=8x^{2}+x[/mm]
>  
> Doch wie geht es weiter?
>  
> Liebe Grüße

Mach dir mal eine Skizze, dann siehst du, dass die Funktion im Intervall eine Nullstelle [mm] x_n [/mm] hat.

[Dateianhang nicht öffentlich]

Berechne diese zuerst, und berechne dann die Fläche A mit:

[mm] A=\left|\int\limits_{-1}^{x_{n}}4x+1dx\right|+\left|\int\limits_{x_{n}}^{2}4x+1dx\right| [/mm]

Marius


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Do 01.11.2012
Autor: Kreuzkette

Okay, die Nullstelle liegt bei -1/4.

Der Flächeninhalt beträgt dann 9 Flächeneinheiten. Danke :)

Bezug
                        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:36 Do 01.11.2012
Autor: M.Rex


> Okay, die Nullstelle liegt bei -1/4.

Ja

>  
> Der Flächeninhalt beträgt dann 9 Flächeneinheiten. Danke
> :)

Nein, es gilt zwar:

[mm] \int\limits_{-1}^{2}4x-1dx=9 [/mm]

Aber das ist nicht der Flächeninhalt, diesen musst du über den Weg der Integralaufspaltung gehen, und die Betragsstriche beachten.

Marius


Bezug
                                
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Sa 03.11.2012
Autor: Kreuzkette

Okay, dann habe ich, wenn ich das aufspalte... 14 raus?

Kann das sein?

Bezug
                                        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:55 Sa 03.11.2012
Autor: Steffi21

Hallo, dein Ergebnis ist nicht korrekt, um den Fehler zu finden, poste mal bitte deine Rechenschritte, Steffi

Bezug
                                                
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Sa 03.11.2012
Autor: Kreuzkette

okay...

(4*(-1/4)+1) - (4*(-1) + 1)   +   (4*2+1) - (4*(-1/4)+1)
=14

Bezug
                                                        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Sa 03.11.2012
Autor: Steffi21

Hallo, wenn ich die Rechnung sehe, so ist anzunehmen, deine Stammfunktion ist falsch, sie lautet [mm] 2x^2+x, [/mm] auch kommt bei deiner Rechnung 12 raus, nicht 14, Steffi

Bezug
                                                                
Bezug
Flächeninhalt bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Mo 12.11.2012
Autor: Kreuzkette

Okay, da ich auf den einen Weg ja einige Fehler gemacht habe und ich die Idee mit den Dreiecksberechnungen ganz gut fand, hab ich diesen Weg nun durchgeführt..

1. Dreieck: -3*(-0,75)*0,5 = 1,125
2. Dreieck: 2.25 * 9 * 0,5 = 10,125

gesamt: 11,25

Kann das jemand freundlicherweise überprüfen?

Bezug
                                                                        
Bezug
Flächeninhalt bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:15 Mo 12.11.2012
Autor: abakus


> Okay, da ich auf den einen Weg ja einige Fehler gemacht
> habe und ich die Idee mit den Dreiecksberechnungen ganz gut
> fand, hab ich diesen Weg nun durchgeführt..
>  
> 1. Dreieck: -3*(-0,75)*0,5 = 1,125
>  2. Dreieck: 2.25 * 9 * 0,5 = 10,125
>  
> gesamt: 11,25
>  
> Kann das jemand freundlicherweise überprüfen?

Stimmt!


Bezug
                                                                                
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:18 Mo 12.11.2012
Autor: Kreuzkette

Danke :)
Schönen Tag noch euch allen!

Bezug
                                                
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:59 Sa 03.11.2012
Autor: abakus


> Hallo, dein Ergebnis ist nicht korrekt, um den Fehler zu
> finden, poste mal bitte deine Rechenschritte, Steffi

Vor allem lässt sich das Ergebnis selbst durch zwei stinknormale Dreiecksflächenberechnungen ohne Integralrechnung bestätigen  bzw. widerlegen.
Gruß Abakus


Bezug
                                                        
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:03 Sa 03.11.2012
Autor: M.Rex

Hallo Abakus

>
> > Hallo, dein Ergebnis ist nicht korrekt, um den Fehler zu
> > finden, poste mal bitte deine Rechenschritte, Steffi
>  Vor allem lässt sich das Ergebnis selbst durch zwei
> stinknormale Dreiecksflächenberechnungen ohne
> Integralrechnung bestätigen  bzw. widerlegen.
>  Gruß Abakus
>  

Das sowieso, aber das wäre ja zu einfach ;-)
Ein kurzer Blick auf die Plausibilität des Ergebnisses kann in der Tat weiterhelfen.

Marius


Bezug
                
Bezug
Flächeninhalt bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:04 Sa 03.11.2012
Autor: abakus


>
> > Geben Sie den Flächeninhalt an, der von der Funktion
> > f(x)=4x+1 und der x-Achse im Intervall von -1 bis 2
> > eingeschlossen wird.
>  >  Hallo erstmal,
>  >  
> > da muss ich ganz ehrlich sagen. Da hab ich nicht mal einen
> > Ansatz. Als Tipp stand da noch, man könnte die
> > Stammfunktion zuerst aufstellen.
>  >  
> > [mm]F(x)=8x^{2}+x[/mm]

Diese Stammfunktion (bzw. der Faktor 8) ist falsch.
Gruß Abakus  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de