www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Frage zu angeordneten Körpern
Frage zu angeordneten Körpern < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zu angeordneten Körpern: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:18 Do 21.02.2013
Autor: Hoschi5678

Aufgabe
Beweisen Sie:
Gilt [mm] $0\le a_1

Von unserem Professor wurde hierfür folgende Lösung angegeben:
[mm] $a_1a_2=0 [mm] $a_1a_2
Insbesondere die erste Zeile bereitet mir Kopfzerbrechen, zuerst dachte ich, es soll die Rückrichtung bewiesen werden. Die Rückrichtung kann aber nicht gelten, denn schließlich sind ja die natürlichen Zahlen ein angeordneter Körper. Und in diesem wäre ein Gegenbeispiel $3 [mm] \cdot [/mm] 8 < 4 [mm] \cdot [/mm] 7$. Hier gilt zwar $3<4$ aber $8 [mm] \not< [/mm] 7$.
Mir ist klar, die Fragen sollen möglichst konkret sein, aber was soll die erste Zeile?
Vielen Dank im Voraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Frage zu angeordneten Körpern: Antwort
Status: (Antwort) fertig Status 
Datum: 00:26 Fr 22.02.2013
Autor: meili

Hallo,

[willkommenmr]

> Beweisen Sie:
>  Gilt [mm]0\le a_1
>  
> Von unserem Professor wurde hierfür folgende Lösung
> angegeben:
> [mm]a_1a_2=0

Eigentlich müsste man das viel ausführlicher schreiben.

Es werden 2 Fälle unterschieden:

1. Fall: [mm] $a_1a_2 [/mm] = 0$  (d.h. [mm] $a_1 [/mm] = 0$ oder [mm] $a_2 [/mm] = 0$ oder beide 0):
Dann ist [mm] $a_1a_2 [/mm] = 0$; und da $0 < [mm] b_1$ [/mm] und $0 < [mm] b_2$, [/mm] ist
[mm] $b_1b_2 [/mm] > 0$, also folgt [mm] $a_1a_2 [/mm] < [mm] b_1b_2$. [/mm]

2. Fall: $0 < [mm] a_1 [/mm] < [mm] b_1$ [/mm] und $0 < [mm] a_2 [/mm] < [mm] b_2$: [/mm]
Das ist die folgende Zeile.

>  
> [mm]a_1a_2
>  
> Insbesondere die erste Zeile bereitet mir Kopfzerbrechen,
> zuerst dachte ich, es soll die Rückrichtung bewiesen
> werden. Die Rückrichtung kann aber nicht gelten, denn
> schließlich sind ja die natürlichen Zahlen ein
> angeordneter Körper. Und in diesem wäre ein Gegenbeispiel
> [mm]3 \cdot 8 < 4 \cdot 7[/mm]. Hier gilt zwar [mm]3<4[/mm] aber [mm]8 \not< 7[/mm].
> Mir ist klar, die Fragen sollen möglichst konkret sein,
> aber was soll die erste Zeile?
>  Vielen Dank im Voraus
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de