www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Funktionsgleichung aufstellen
Funktionsgleichung aufstellen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsgleichung aufstellen: Erklärung
Status: (Frage) beantwortet Status 
Datum: 10:47 Mo 16.06.2008
Autor: crazy1

Aufgabe
Um die Ortschaft D, die an der geraden Straße A und B liegt, wird eine Umgehungsstraße gebaut. Diese soll in A und B tangential in die alte Straße münden und durch den Punkt C gehen.

a) Bestimmen Sie eine ganzrationale Funktion vom Grad 4, deren Graph den obigen Bedingungen entspricht.  

Lösung:
Mit den aus der Aufgabenstellung begründbaren Bedingungen f(0) = 4,
f(2) = 1, f(4) = 0, f ´(0) = –1 und f ´(4) = –1 lässt sich das Gleichungssystem mit 5 Variablen eindeutig lösen:
f(x) = [mm] -1/16x^4+1/2x^3-x^2-x+4 [/mm]

Die Punkte von A, B und C konnte man ablesen und so in die allgemeine Gleichung der Funktion einsetzen, wobei ich zumindesten schoneinmal rausbekommen habe, das a0=4
A(0/4)  B(4/0)  C(2/1)
dann f`(x)=m macht auch sinn und die f`(4)=1 dann auch. nur diese f`(0)=-1 sagt mir nichts. und ich kapiere auch nicht ganz, wie ich den rest der gleichung rausbekomme.

        
Bezug
Funktionsgleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:19 Mo 16.06.2008
Autor: hase-hh

Moin,

hmm, ich versuche mal aus deinen Angaben eine Antwort zu geben...

> Die Punkte von A, B und C konnte man ablesen und so in die
> allgemeine Gleichung der Funktion einsetzen, wobei ich
> zumindesten schon einmal rausbekommen habe, das a0=4
>  A(0/4)  B(4/0)  C(2/1)

>  dann f'(x)=m macht auch sinn und die f'(4)=1 dann auch.
> nur diese f'(0)=-1 sagt mir nichts.

Ich nehme mal an, dass du hier f ' (4) = - 1 meinst.

"Diese soll in A  und B tangential in die alte Straße münden"

Die Steigung der Tangente, die ja durch A und B gehen soll, ist ja immer m.

=> f ' (4) = -1   und  f ' (0) = -1


Aus deinen Bedingungen erhältst du vier Ansatzgleichungen...


f(x)=  [mm] a4x^4 +a3x^3 +a2x^2 +a1^x [/mm] +a0

f(0) = 4  => a0=4

f(4)=0  =>  0 =  256a4 + 64a3 +16a2 +4a1 +4

f(2)=1  =>  1 =  16a4 +8a3 +4a2 +2a1 +4

f ' (x) = [mm] 4*a4x^3 +3*a3x^2 [/mm] +2*a2x +a1

usw.

Ich könnte die Steigung der Geraden z.B: über die Sekantensteigung ermitteln:

m = [mm] \bruch{y2 -y1}{x2 -x1} [/mm]

Da ich ja A und B gegeben habe, kann ich einsetzen

m = [mm] \bruch{0 -4}{4 -0} [/mm] = -1


Vielleicht meinst du das?

gruß
wolfgang

Bezug
        
Bezug
Funktionsgleichung aufstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:59 Mo 16.06.2008
Autor: Steffi21

Hallo, es handelt sich nur um eine Funktion 4. Grades:

(0; 4) ergibt [mm] 4=a_0 [/mm]

(4; 0) ergibt [mm] 0=256a_4+64a_3+16a_2+4a_1+a_0 [/mm]

(2; 1) ergibt [mm] 1=16a_4+8a_3+4a_2+2a_1+a_0 [/mm]

f'(0)=-1 ergibt [mm] -1=a_1 [/mm]

f'(4)=-1 ergibt [mm] -1=256a_4+48a_3+8a_2+a_1 [/mm]

vereinfache deine Gleichungen noch, seztze [mm] a_0 [/mm] und [mm] a_1 [/mm] ein, du bekommst drei Gleichungen mit drei Unbekannten,

[Dateianhang nicht öffentlich]

Farbe grün ist die Umgehungstraße
Steffi

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de