www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Gruppenoperation, Untergruppen
Gruppenoperation, Untergruppen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gruppenoperation, Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:54 Mi 15.06.2011
Autor: paula_88

Aufgabe
Sei [mm] (G,\cdot) [/mm] eine Gruppe, seien [mm] U_{1} [/mm] und [mm] U_{2} [/mm] Untergruppen von G und seien a,b [mm] \in [/mm] G.

Welche der folgenden Mengen bilden Untergruppen von G bzgl. der Gruppenoperation [mm] \cdot [/mm] von G?
a) [mm] U_{1} \cap U_{2} [/mm]
b) [mm] U_{1} \cup U_{2} [/mm]
c) [mm] \{a^{n} \cdot b^{m}: n,m \in \IZ\} [/mm]

Hallo an alle,
bei dieser Aufgabe tu ich mich ein bisschen schwer.
Es ist nichts zu beweisen, nur im Kopf zu überlegen und ich stocke :-)

Mir ist bewusst, was Untergruppen sind, wären Beispiele gegeben könnte ich auch sagen ob U eine Untergruppe von G wäre oder nicht.
Leider komme ich mit der Operation, die gegeben ist, nicht ganz klar.
Wie sieht diese Operation aus und wie kann ich es im Kopf testen, ob sie eine Untergruppe bildet?
Was eine Vereinigung und ein Durchschnitt ist, ist mir auch klar.

Vielleicht könnte mir jemand die Aufgabe einfach ein bisschen näher bringen, in dem mir erklärt wird, wie diese Operation aussieht und was genau zu prüfen ist bzgl der Untergruppen.

Vielen Dank, eure Paula

        
Bezug
Gruppenoperation, Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Mi 15.06.2011
Autor: meili

Hallo Paula,

> Sei [mm](G,\cdot)[/mm] eine Gruppe, seien [mm]U_{1}[/mm] und [mm]U_{2}[/mm]
> Untergruppen von G und seien a,b [mm]\in[/mm] G.
>  
> Welche der folgenden Mengen bilden Untergruppen von G bzgl.
> der Gruppenoperation [mm]\cdot[/mm] von G?
>  a) [mm]U_{1} \cap U_{2}[/mm]
>  b) [mm]U_{1} \cup U_{2}[/mm]
>  c) [mm]\{a^{n} \cdot b^{m}: n,m \in \IZ\}[/mm]
>  
> Hallo an alle,
>  bei dieser Aufgabe tu ich mich ein bisschen schwer.
>  Es ist nichts zu beweisen, nur im Kopf zu überlegen und
> ich stocke :-)
>  
> Mir ist bewusst, was Untergruppen sind, wären Beispiele
> gegeben könnte ich auch sagen ob U eine Untergruppe von G
> wäre oder nicht.
>  Leider komme ich mit der Operation, die gegeben ist, nicht
> ganz klar.
>  Wie sieht diese Operation aus und wie kann ich es im Kopf
> testen, ob sie eine Untergruppe bildet?

Leider ist diese Operation ganz allgemein eine Operation, die
G zu einer Gruppe macht. Über diese Operation ist also nicht mehr
bekannt, als dass sie die MBGruppenaxiome erfüllt.
Auch über G ist nichts konkret bekannt, ausser dass G eine Gruppe ist.
Ebenso [mm] $U_1$ [/mm] und [mm] $U_2$ [/mm] sind Untergruppen, ohne dass man weiteres
über sie weis.

>  Was eine Vereinigung und ein Durchschnitt ist, ist mir
> auch klar.
>  
> Vielleicht könnte mir jemand die Aufgabe einfach ein
> bisschen näher bringen, in dem mir erklärt wird, wie
> diese Operation aussieht und was genau zu prüfen ist bzgl
> der Untergruppen.

Bei a) ist z.B. für $a,b [mm] \in U_1 \cap U_2$ [/mm] zu zeigen [mm] $ab^{-1} \in U_1 \cap U_2$. [/mm]
Dabei kann man nur nutzen [mm] $U_1$ [/mm] und [mm] $U_2$ [/mm] sind Untergruppen von G.

>  
> Vielen Dank, eure Paula

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de