www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Herleitung: Adam-Bashforth m=2
Herleitung: Adam-Bashforth m=2 < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Herleitung: Adam-Bashforth m=2: Denkfehler oder Rechenfehler
Status: (Frage) beantwortet Status 
Datum: 13:27 Do 23.06.2011
Autor: KomplexKompliziert

Aufgabe
Herleitung des Adam-Bashforth-Verfahrens m=2 mit den Lagrange-Grundpolynomen

Hallo Zusammen!
Ich habe mir folgende Zusammenfassung erstellt um die Adam-Bashforth-Verfahren herzuleiten.

[mm] y_{k+m}=y_{k+m-1}+h\sum_{j=0}^{m-1} \beta_jf_{k+j} [/mm]

mit

[mm] \beta_j=\int_{m-1}^m L_j(x) [/mm] ds

und

[mm] L_j(x)=\prod_{\underset{i\ne j}{i=0}}^{m-1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}} [/mm]


Herleitung f"ur m=2:
1.)  Iterationsvorschrift:

[mm] y_{k+2}&=y_{k+1}+\sum_{j=0}^{1} \beta_jf_{k+j}\\ [/mm]
[mm] &=y_{k+1}+\beta_0f_{k}+\beta_1f_{k+1}\\ [/mm]
[mm] &=y_{k+1}+ \int_{m-1}^m L_0(x) ds\cdot f_{k}+\int_{m-1}^m L_1(x) ds\cdot f_{k+1}\\ [/mm]

2.)  Bestimmung von [mm] \beta [/mm]

[mm] \beta_0&=\int_{1}^2 L_0(x) dx\\ [/mm]
[mm] &=\int_{1}^2 \prod_{\underset{i\ne j}{i=0}}^{1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}} ds\\ [/mm]
[mm] &=\int_{1}^2 \frac{s-x_{k+1}}{\textcolor{green}{x_{k}}-x_{k+1}} ds\\ [/mm]
Setze  [mm] s=\textcolor{green}{x_k}+h\cdot &\xi\rightarrow \frac{ds}{d\xi}=h\\ [/mm]
Weiter gilt: [mm] x_k-&x_{k+1}=-h\\ [/mm]
[mm] &=\int_{1}^2 \frac{x_k+h\xi-x_{k+1}}{-h} h\cdot d\xi\\ [/mm]
[mm] &=h\cdot \int_{1}^2 \frac{-h+h\xi}{-h} d\xi\\ [/mm]
[mm] &=h\cdot \int_{1}^2 1-\xi d\xi\\ [/mm]
[mm] &=h\left[\xi- \frac{1}{2}\xi^2\right]^2_1=h\cdot(2-2-1+0,5)=-0,5h [/mm]


[mm] \beta_1&=\int_{1}^2 L_1(x) dx\\ [/mm]
[mm] &=\int_{1}^2 \prod_{\underset{i\ne j}{i=0}}^{1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}} ds\\ [/mm]
[mm] &=\int_{1}^2 \frac{s-x_{k}}{\textcolor{green}{x_{k+1}}-x_{k}} ds\\ [/mm]
Setze  [mm] s=\textcolor{green}{x_{k+1}}&+h\cdot \xi\rightarrow \frac{ds}{d\xi}=h\\ [/mm]
Weiter gilt: [mm] &x_{k+1}-x_{k}=h\\ [/mm]
[mm] &=\int_{1}^2 \frac{x_{k+1}+h\xi-x_{k}}{x_{k+1}-x_{k}} h\cdot d\xi\\ [/mm]
[mm] &=h\cdot \int_{1}^2 \frac{h+h\xi}{h} d\xi=h\int_{1}^2 1+\xi d\xi\\ [/mm]
[mm] &=h\left[\xi+\frac{1}{2}\xi ^2\right]^2_1=2,5h [/mm]

Eigentlich sollte für [mm] \beta_1 =\frac{3h}{2} [/mm] rauskommen.

Kann mir jemand helfen?

a.) Sind meine obigen Definitionen überhaupt richtig?
b.) Wo liegt mein Denk- bzw. Rechenfehler?


Vielen vielen Dank schon im Voraus!

        
Bezug
Herleitung: Adam-Bashforth m=2: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Do 07.07.2011
Autor: meili

Hallo,

> Herleitung des Adam-Bashforth-Verfahrens m=2 mit den
> Lagrange-Grundpolynomen
>  Hallo Zusammen!
>  Ich habe mir folgende Zusammenfassung erstellt um die
> Adam-Bashforth-Verfahren herzuleiten.
>
> [mm]y_{k+m}=y_{k+m-1}+h\sum_{j=0}^{m-1} \beta_jf_{k+j}[/mm]
>  
> mit
>  
> [mm]\beta_j=\int_{m-1}^m L_j(x)[/mm] ds
>  
> und
>  
> [mm]L_j(x)=\prod_{\underset{i\ne j}{i=0}}^{m-1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}}[/mm]
>  
>
> Herleitung f"ur m=2:
>  1.)  Iterationsvorschrift:
>  
> [mm]y_{k+2}&=y_{k+1}+\sum_{j=0}^{1} \beta_jf_{k+j}\\[/mm]
>  
> [mm]&=y_{k+1}+\beta_0f_{k}+\beta_1f_{k+1}\\[/mm]
>  [mm]&=y_{k+1}+ \int_{m-1}^m L_0(x) ds\cdot f_{k}+\int_{m-1}^m L_1(x) ds\cdot f_{k+1}\\[/mm]
>  
> 2.)  Bestimmung von [mm]\beta[/mm]
>  
> [mm]\beta_0&=\int_{1}^2 L_0(x) dx\\[/mm]
>  [mm]&=\int_{1}^2 \prod_{\underset{i\ne j}{i=0}}^{1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}} ds\\[/mm]
>  
> [mm]&=\int_{1}^2 \frac{s-x_{k+1}}{\textcolor{green}{x_{k}}-x_{k+1}} ds\\[/mm]
>  
> Setze  [mm]s=\textcolor{green}{x_k}+h\cdot &\xi\rightarrow \frac{ds}{d\xi}=h\\[/mm]
>  
> Weiter gilt: [mm]x_k-&x_{k+1}=-h\\[/mm]
>  [mm]&=\int_{1}^2 \frac{x_k+h\xi-x_{k+1}}{-h} h\cdot d\xi\\[/mm]
>  
> [mm]&=h\cdot \int_{1}^2 \frac{-h+h\xi}{-h} d\xi\\[/mm]
>  [mm]&=h\cdot \int_{1}^2 1-\xi d\xi\\[/mm]
>  
> [mm]&=h\left[\xi- \frac{1}{2}\xi^2\right]^2_1=h\cdot(2-2-1+0,5)=-0,5h[/mm]
>  
>
> [mm]\beta_1&=\int_{1}^2 L_1(x) dx\\[/mm]
>  [mm]&=\int_{1}^2 \prod_{\underset{i\ne j}{i=0}}^{1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}} ds\\[/mm]
>  
> [mm]&=\int_{1}^2 \frac{s-x_{k}}{\textcolor{green}{x_{k+1}}-x_{k}} ds\\[/mm]
>  
> Setze  [mm]s=\textcolor{green}{x_{k+1}}&+h\cdot \xi\rightarrow \frac{ds}{d\xi}=h\\[/mm]
>  
> Weiter gilt: [mm]&x_{k+1}-x_{k}=h\\[/mm]
>  [mm]&=\int_{1}^2 \frac{x_{k+1}+h\xi-x_{k}}{x_{k+1}-x_{k}} h\cdot d\xi\\[/mm]
>  
> [mm]&=h\cdot \int_{1}^2 \frac{h+h\xi}{h} d\xi=h\int_{1}^2 1+\xi d\xi\\[/mm]
>  
> [mm]&=h\left[\xi+\frac{1}{2}\xi ^2\right]^2_1=2,5h[/mm]

Steckt der Fehler nicht hier?

[mm]h\left[\xi+\frac{1}{2}\xi ^2\right]^2_1=h(2+1-(1+\frac{1}{2}))=h*(2+1-1-\frac{1}{2})=\frac{3h}{2}[/mm]

>  
> Eigentlich sollte für [mm]\beta_1 =\frac{3h}{2}[/mm] rauskommen.
>
> Kann mir jemand helfen?
>  
> a.) Sind meine obigen Definitionen überhaupt richtig?
>  b.) Wo liegt mein Denk- bzw. Rechenfehler?
>  
>
> Vielen vielen Dank schon im Voraus!

Gruß
meili

Bezug
                
Bezug
Herleitung: Adam-Bashforth m=2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:36 Fr 08.07.2011
Autor: KomplexKompliziert

Hallo meili!
> > [mm]&=h\left[\xi+\frac{1}{2}\xi ^2\right]^2_1=2,5h[/mm]
>  Steckt
> der Fehler nicht hier?
>  
> [mm]h\left[\xi+\frac{1}{2}\xi ^2\right]^2_1=h(2+\textcolor{red}{1}-(1+\frac{1}{2}))=h*(2+1-1-\frac{1}{2})=\frac{3h}{2}[/mm]
>  
> >  

Meines Erachtens nicht, denn du hast bei dem rot markierten glaube ich das Quadrat vergessen... denn [mm] \frac{1}{2}\cdot 2^2=2$ [/mm]
...oder ich bin jetzt vollkommen neben der Kappe.
Hast du sonst noch eine Idee?


Bezug
                        
Bezug
Herleitung: Adam-Bashforth m=2: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Fr 08.07.2011
Autor: meili

Hallo,

> Hallo meili!
>  > > [mm]&=h\left[\xi+\frac{1}{2}\xi ^2\right]^2_1=2,5h[/mm]

>  >  
> Steckt
> > der Fehler nicht hier?
>  >  
> > [mm]h\left[\xi+\frac{1}{2}\xi ^2\right]^2_1=h(2+\textcolor{red}{1}-(1+\frac{1}{2}))=h*(2+1-1-\frac{1}{2})=\frac{3h}{2}[/mm]
>  
> >  

> > >  

> Meines Erachtens nicht, denn du hast bei dem rot markierten
> glaube ich das Quadrat vergessen... denn [mm]\frac{1}{2}\cdot 2^2=2$[/mm]
>  
> ...oder ich bin jetzt vollkommen neben der Kappe.
>  Hast du sonst noch eine Idee?
>  

Ja, Du hast recht. Ich habe da einen Murks zusammen gekürzt.
Der Fehler muss wohl wo anderst liegen.

Gruß
meili

Bezug
                        
Bezug
Herleitung: Adam-Bashforth m=2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Do 14.07.2011
Autor: meili

Hallo,
ich versuchs nochmal.

> Hallo Zusammen!
> Ich habe mir folgende Zusammenfassung erstellt um die Adam-Bashforth-Verfahren herzuleiten.

Adams-Bashforth-Verfahren

> $ [mm] y_{k+m}=y_{k+m-1}+h\sum_{j=0}^{m-1} \beta_jf_{k+j} [/mm] $

[ok]

> mit

> $ [mm] \beta_j=\int_{m-1}^m L_j(x) [/mm] $ ds

Die Integrationsgrenzen sind nicht in Ordnung.
Besser
$ [mm] \beta_j=\bruch{1}{h}*\int_{x_{k+m-1}}^{x_{k+m}}{L_j(s) ds}$. [/mm]

Bei dem Verfahren wird die Funktion f durch ein Polynom p vom Grad m-1
in den Knoten [mm] $(x_k,f(x_k) [/mm] , [mm] \ldots [/mm] , [mm] (x_{k+(m-1)},f(x_{k+(m-1)})$ [/mm] interpoliert. Man erhält damit:
$ [mm] y_{k+m}=y_{k+m-1}+\integral_{x_{k+m-1}}^{x_{k+m}}{p(t) dt} [/mm] $

> und

> $ [mm] L_j(s)=\prod_{\underset{i\ne j}{i=0}}^{m-1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}} [/mm] $

[ok]

> Herleitung für m=2:
> 1.)  Iterationsvorschrift:

> $ [mm] y_{k+2}&=y_{k+1}+\sum_{j=0}^{1} \beta_jf_{k+j}\\ [/mm] $
> $ [mm] &=y_{k+1}+\beta_0f_{k}+\beta_1f_{k+1}\\ [/mm] $
> $ [mm] &=y_{k+1}+ \int_{m-1}^m L_0(x) ds\cdot f_{k}+\int_{m-1}^m L_1(x) ds\cdot f_{k+1}\\ [/mm] $



$ [mm] y_{k+2}&=y_{k+1}+h*\sum_{j=0}^{1} \beta_jf_{k+j}\\ [/mm] $

$ [mm] &=y_{k+1}+h*\beta_0f_{k}+h*\beta_1f_{k+1}\\ [/mm] $

$ [mm] &=y_{k+1}+ \int_{x_{k+1}}^{x_{k+2}}{ L_0(s) ds}\cdot f_{k}+\int_{x_{k+1}}^{x_{k+2}}{ L_1(s) ds}\cdot f_{k+1}\\ [/mm] $



> 2.)  Bestimmung von $ [mm] \beta [/mm] $

> $ [mm] \beta_0&=\int_{1}^2 L_0(x) dx\\ [/mm] $
> $ [mm] &=\int_{1}^2 \prod_{\underset{i\ne j}{i=0}}^{1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}} ds\\ [/mm] $
> $ [mm] &=\int_{1}^2 \frac{s-x_{k+1}}{\textcolor{green}{x_{k}}-x_{k+1}} [/mm] dSetze  $ [mm] s=\textcolor{green}{x_k}+h\cdot &\xi\rightarrow \frac{ds}{d\xi}=h\\ [/mm] $
> Weiter gilt: $ [mm] x_k-&x_{k+1}=-h\\ [/mm] $
> $ [mm] &=\int_{1}^2 \frac{x_k+h\xi-x_{k+1}}{-h} h\cdot d\xi\\ [/mm] $
> $ [mm] &=h\cdot \int_{1}^2 \frac{-h+h\xi}{-h} d\xi\\ [/mm] $
> $ [mm] &=h\cdot \int_{1}^2 1-\xi d\xi\\ [/mm] $
> $ [mm] &=h\left[\xi- \frac{1}{2}\xi^2\right]^2_1=h\cdot(2-2-1+0,5)=-0,5h [/mm] $


[mm] $\beta_0 [/mm] = [mm] \bruch{1}{h}*\integral_{x_{k+1}}^{x_{k+2}}{L_0(s) ds} [/mm] = [mm] \bruch{1}{h}*\integral_{x_{k+1}}^{x_{k+2}}{\frac{s-x_{k+1}}{x_{k}-x_{k+1}} ds}$ [/mm] =
[mm] $\bruch{1}{-h^2}*\integral_{x_{k+1}}^{x_{k+2}}{s-x_{k+1} ds}$ [/mm] =
[mm] $\bruch{1}{-h^2}\left[ \frac{1}{2}*s^2 - s*x_{k+1}\right]^{x_{k+2}}_{x_{k+1}}$ [/mm] =
[mm] $\bruch{1}{-h^2}\left( \frac{1}{2}*x_{k+2}^2 - x_{k+2}*x_{k+1} - \frac{1}{2}*x_{k+1}^2 + x_{k+1}^2\right) [/mm] = [mm] \bruch{1}{-2*h^2}* \left( x_{k+2}^2 - 2*x_{k+1}*x_{k+2} + x_{k+1}^2 \right)$ [/mm] =  
[mm] $\bruch{1}{-2*h^2}*\left( x_{k+2} - x_{k+1} \right)^2 [/mm] = [mm] -\bruch{1}{2}$ [/mm]



> $ [mm] \beta_1&=\int_{1}^2 L_1(x) dx\\ [/mm] $
> $ [mm] &=\int_{1}^2 \prod_{\underset{i\ne j}{i=0}}^{1} \frac{s-x_{k+i}}{x_{k+j}-x_{k+i}} ds\\ [/mm] $
> $ [mm] &=\int_{1}^2 \frac{s-x_{k}}{\textcolor{green}{x_{k+1}}-x_{k}} ds\\ [/mm] $
> Setze  $ [mm] s=\textcolor{green}{x_{k+1}}&+h\cdot \xi\rightarrow \frac{ds}{d\xi}=h\\ [/mm] $
> Weiter gilt: $ [mm] &x_{k+1}-x_{k}=h\\ [/mm] $
> $ [mm] &=\int_{1}^2 \frac{x_{k+1}+h\xi-x_{k}}{x_{k+1}-x_{k}} h\cdot d\xi\\ [/mm] $
> $ [mm] &=h\cdot \int_{1}^2 \frac{h+h\xi}{h} d\xi=h\int_{1}^2 1+\xi d\xi\\ [/mm] $
> $ [mm] &=h\left[\xi+\frac{1}{2}\xi ^2\right]^2_1=2,5h [/mm] $

> Eigentlich sollte für $ [mm] \beta_1 =\frac{3h}{2} [/mm] $ rauskommen.


[mm] $\beta_1 [/mm] = [mm] \bruch{1}{h}*\integral_{x_{k+1}}^{x_{k+2}}{L_1(s) ds} [/mm] = [mm] \bruch{1}{h}*\integral_{x_{k+1}}^{x_{k+2}}{\frac{s-x_{k}}{x_{k+1}-x_{k}} ds}$ [/mm] =
[mm] $\bruch{1}{h^2}*\integral_{x_{k+1}}^{x_{k+2}}{s-x_{k} ds}$ [/mm] =
[mm] $\bruch{1}{h^2}\left[ \frac{1}{2}*s^2 - s*x_{k}\right]^{x_{k+2}}_{x_{k+1}}$ [/mm] =
[mm] $\bruch{1}{h^2}\left( \frac{1}{2}*x_{k+2}^2 - x_{k+2}*x_{k} - \frac{1}{2}*x_{k+1}^2 + x_{k+1}*x_k\right)$ [/mm] =
[mm] $\bruch{1}{h^2}* \left( x_k*(x_{k+1} - x_{k+2})+\bruch{1}{2}\left(x_{k+2}^2 - x_{k+1}^2 \right) \right)$ [/mm] =
$ [mm] \bruch{1}{h^2}*\left( x_{k}*(-h) +\bruch{1}{2}\left(x_{k+2} + x_{k+1} \right)*\left(x_{k+2} - x_{k+1} \right) \right)$ [/mm] =
[mm] $\bruch{1}{h}\left( -x_k + \bruch{1}{2}*\left(x_{k+2}+x_{k+1}\right)\right)$ [/mm] =
[mm] $\bruch{1}{h}*\bruch{3}{2}*h [/mm] = [mm] \bruch{3}{2}$ [/mm]

> Kann mir jemand helfen?

> a.) Sind meine obigen Definitionen überhaupt richtig?
> b.) Wo liegt mein Denk- bzw. Rechenfehler?


> Vielen vielen Dank schon im Voraus!

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de