www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Homogenes Gleichungssystem
Homogenes Gleichungssystem < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Homogenes Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Sa 16.07.2016
Autor: Fjury

Aufgabe
Für eine Matrix A  [mm] \in [/mm] M( [mm] 4x5;\IR [/mm] )

[mm] \pmat{ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 2& 3 & 4 & 5 & 6 \\ 0 & 2 & 2 & 4 & 4 } [/mm]

bestimme man die Lösung des homogenen Gleichungssystems Ax= 0

Hi, bin bereits durch auflösen nach Gauß auf

[mm] \pmat{ 1 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 1 & 0 \\ 0& 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 } [/mm]

gekommen, dadurch hat das LGS nichttriviale Lösungen

Allerdings komme ich hier jetzt nicht weiter, habe mehrmals versucht mit Parametern die Lösung zu bestimmen, komme aber irgendwie nicht weiter...


gewählt habe ich für bspw. [mm] x_{4}= [/mm] t



        
Bezug
Homogenes Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Sa 16.07.2016
Autor: luis52


> Für eine Matrix A  [mm]\in[/mm] M( [mm]4x5;\IR[/mm] )
>
> [mm]\pmat{ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 2& 3 & 4 & 5 & 6 \\ 0 & 2 & 2 & 4 & 4 }[/mm]
>  
> bestimme man die Lösung des homogenen Gleichungssystems
> Ax= 0
>  Hi, bin bereits durch auflösen nach Gauß auf
>  
> [mm]\pmat{ 1 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 1 & 0 \\ 0& 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 }[/mm]
>  
> gekommen, dadurch hat das LGS nichttriviale Lösungen
>  
> Allerdings komme ich hier jetzt nicht weiter, habe mehrmals
> versucht mit Parametern die Lösung zu bestimmen, komme
> aber irgendwie nicht weiter...
>  
>
> gewählt habe ich für bspw. [mm]x_{4}=[/mm] t
>  
>  

Moin, haenge unten an die letzten beiden beiden Vektoren (ohne die Nullzeile) die Matrix  [mm]\pmat{ -1 & 0 \\ 0 & -1}[/mm].

Du erhaeltst

[mm]\pmat{ -1 & -1 \\ 1 & 0 \\ 1 & 2 \\-1 &0 \\ 0 &-1 }=(\mathbf{z}_1,\mathbf{z}_2)[/mm].

Die allgemeine Loesung ist [mm] $\alpha_1\mathbf{z}_1+\alpha_2\mathbf{z}_2$, $\alpha_1,\alpha_2\in\IR. [/mm]








Bezug
        
Bezug
Homogenes Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Sa 16.07.2016
Autor: HJKweseleit


> Für eine Matrix A  [mm]\in[/mm] M( [mm]4x5;\IR[/mm] )
>
> [mm]\pmat{ 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 2& 3 & 4 & 5 & 6 \\ 0 & 2 & 2 & 4 & 4 }[/mm]
>  
> bestimme man die Lösung des homogenen Gleichungssystems
> Ax= 0
>  Hi, bin bereits durch auflösen nach Gauß auf
>  
> [mm]\pmat{ 1 & 0 & 0 & -1 & -1 \\ 0 & 1 & 0 & 1 & 0 \\ 0& 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 }[/mm]
>  
> gekommen, dadurch hat das LGS nichttriviale Lösungen
>  
> Allerdings komme ich hier jetzt nicht weiter, habe mehrmals
> versucht mit Parametern die Lösung zu bestimmen, komme
> aber irgendwie nicht weiter...
>  
>
> gewählt habe ich für bspw. [mm]x_{4}=[/mm] t
>  
>  

Wie du siehst, hast du für 5 Unbekannte nur 3 Gleichungen (die untere Nullzeile besagt nur, dass eine der 4 Ausgangsgleichungen irgendeine Linearkombination der anderen war und sie damit keine zusätzliche Information enthält). Von 5 Unbekannten kannst du wegen der 3 Gleichungen nur 3 - in Abhängigkeit von den beiden anderen - bestimmen.

Nenne [mm] x_4 [/mm] = t und [mm] x_5 [/mm] = v.

Nun formst du die 3 oberen Zeilen deiner Endmatrix wieder in neue Gleichungen um:
[mm] x_1 [/mm]  - 1*u -1*v = 0
[mm] x_2 [/mm] + 1*t = 0
[mm] x_3 [/mm] + 1*t + 2*v = 0  

Damit erhältst du nun alle Lösungen:

[mm] x_1 [/mm] = u+v
[mm] x_2 [/mm] = -t
[mm] x_3 [/mm] = -t -2v
[mm] x_4 [/mm] = t
[mm] x_5 [/mm] = v

t, v beliebig.

Bezug
                
Bezug
Homogenes Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Sa 16.07.2016
Autor: luis52

  
> Damit erhältst du nun alle Lösungen:
>  
> [mm]x_1[/mm] = u+v
>  [mm]x_2[/mm] = -t
>  [mm]x_3[/mm] = -t -2v
>  [mm]x_4[/mm] = t
>  [mm]x_5[/mm] = v
>  
> t, v beliebig.

Sehr schoen, das entspricht fast der Loesung oben. Nur ist mit unklar, was $u$ ist.


Bezug
                        
Bezug
Homogenes Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Sa 16.07.2016
Autor: Steffi21

Gönne HJK doch den kleinen Schreibfehler [mm] x_1=t+v [/mm] Steffi

Bezug
                                
Bezug
Homogenes Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:21 Sa 16.07.2016
Autor: Fjury

Ah, misst danke ^^ okay, also zwei unbekannte wählen :p ja dann war ich fast beim ergebnis... Danke euch
Gruß Adrian

Bezug
                                
Bezug
Homogenes Gleichungssystem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:24 Sa 16.07.2016
Autor: luis52


> Gönne HJK doch den kleinen Schreibfehler [mm]x_1=t+v[/mm] Steffi

Ah, ja! [happy]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de