Induktionsbeweis < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:03 Sa 14.01.2023 | Autor: | rosimosi |
Aufgabe | [mm] P_{z}(n,T)= \frac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot \prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}
[/mm]
für alle n [mm] \in [/mm] {0,...,T} und z [mm] \in [/mm] {0,...,n}
zu zeigen: n -> n+1 |
Hallo,
die Gleichung ist auch gleichzeitig meine Induktionsvoraussetzung.
Ich muss das ganze nun für n+1 zeigen.
Den Ansatz habe ich schon aufstellen können.Als Hinweis: [mm] \frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot [/mm] h(T-(n+1)) hat der Professor vorgegeben. Ich muss mit diesem Term den Induktionsschritt beginnen. Mein Ansatz siehtso aus:
Induktionsschritt:
[mm] P_{z}(n+1,T)= \frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot h(T-(n+1))=\frac{\frac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot\prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}}{\frac{P_{0}(n-z,T)}{P_{0}(n-z,n+1)}\cdot \prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}}\cdot [/mm] h(T-(n+1))
Ab hier weiss ich nicht mehr weiter :/. Wie kann ich denn mit zwei Produktzeichen arbeiten? Wäre sehr nett, wenn ich einen Tipp kriegen könnte.
Die Indukstionsbehauptung ist:
[mm] P_{z}(n+1,T)= \frac{P_{0}(n+1-z,T)}{P_{0}(n+1-z,n+1)}\cdot \prod_{k=0}^{z-1}\frac{h(T-(n+1)+k)}{h(k)}
[/mm]
Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
https://www.matheboard.de/thread.php?threadid=603860
|
|
|
|
Hallo rosimosi,
könntest du uns (ev. als kleine Motivation) eine Idee davon übermitteln,
was die hier vorkommenden Funktionen $ [mm] P_z(n,T)$ [/mm] und $h(k)$ inhaltlich bedeuten ?
Ganz ohne Vorstellung davon ist das Ganze schon eine sehr abstrakte Übung .....
LG , Al-Chw.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:49 Sa 14.01.2023 | Autor: | rosimosi |
Hallo Al-Chwarizmi,
Ich stelle in meiner Arbeit das Zinsstrukturmodell von Ho und Lee vor. Ho und Lee haben für ihr Modell aus einer risikolosen NKA (Nullkuponanleihe) ausgehend von der Diskontierungsfunktion [mm] $P_{z}(t,T)$ [/mm] in $t=0$ multipliziert mit einer Störfunktion konstruiert.
$ [mm] P_z(n,T) [/mm] $ gibt in einem Binomialmodell den Zerobondpreis in Periode n nach z Aufwärtsbewegungen.
Im mehrperiodgen Binomialmodell ist der Preis einer NKA in Periode n nach z Aufwärtsbewegungen:
[mm] P_{z}(n,T)= \dfrac{P_{z-1}(n-1,T)}{P_{z-1}(n-1,n)}\cdot h(T-n)\\
[/mm]
= [mm] \dfrac{P_{z-2}(n-2,T)}{P_{z-2}(n-2,n)}\cdot \dfrac{h(T-n+1)\cdot h(T-n)}{h(1)}\\
[/mm]
= [mm] \dfrac{P_{z-3}(n-3,T)}{P_{z-3}(n-3,n)}\cdot\dfrac{h(T-n+2)\cdot h(T-n+1) \cdot h(T-n)}{h(2) \cdot h(1)} \\
[/mm]
= [mm] \dfrac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot\dfrac{h(T-n+z-1)\cdots h(T-n)}{h(z-1) \cdots h(1)} [/mm]
und über dieses rekursive Einsetzen muss ich in ein Induktionsbeweis durchführen.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:14 Mo 16.01.2023 | Autor: | meili |
Hallo rosimosi,
> [mm]P_{z}(n,T)= \frac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot \prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}[/mm]
>
> für alle n [mm]\in[/mm] {0,...,T} und z [mm]\in[/mm] {0,...,n}
> zu zeigen: n -> n+1
> Hallo,
> die Gleichung ist auch gleichzeitig meine
> Induktionsvoraussetzung.
> Ich muss das ganze nun für n+1 zeigen.
> Den Ansatz habe ich schon aufstellen können.Als Hinweis:
> [mm]\frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot[/mm] h(T-(n+1)) hat der
> Professor vorgegeben. Ich muss mit diesem Term den
> Induktionsschritt beginnen. Mein Ansatz siehtso aus:
> Induktionsschritt:
> [mm]P_{z}(n+1,T)= \frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot h(T-(n+1))=\frac{\frac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot\prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}}{\frac{P_{0}(n-z,T)}{P_{0}(n-z,n+1)}\cdot \prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}}\cdot[/mm]
> h(T-(n+1))
Es ist nicht leicht, bei den Indices und Variablen durchzublicken.
Deshalb nochmal für [mm] $P_{z-1}(n,T)$ [/mm] und [mm] $P_{z-1}(n,n+1)$ [/mm] eingesetzt analog zu der zu beweisenden Formel und danach etwas zusammengefasst:
[mm] $P_{z-1}(n,T) [/mm] = [mm] \frac{P_{0}(n-(z-1),T)}{P_{0}(n-(z-1),n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)} [/mm] = [mm] \frac{P_{0}(n-z+1),T)}{P_{0}(n-z+1,n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)} [/mm] = [mm] \frac{P_{0}(n+1-z),T)}{P_{0}(n+1-z,n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)}$
[/mm]
[mm] $P_{z-1}(n,n+1) [/mm] = [mm] \frac{P_{0}(n-(z-1),n+1)}{P_{0}(n-(z-1),n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h((n+1)-n+k)}{h(k)} [/mm] = [mm] \frac{P_{0}(n-z+1, n+1)}{P_{0}(n-z+1), n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(k+1)}{h(k)} [/mm] = [mm] \frac{P_{0}(n+1-z, n+1)}{P_{0}(n+1-z), n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(k+1)}{h(k)}$
[/mm]
>
Macht dann aus deinem Ansatz:
[mm]P_{z}(n+1,T)= \frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot h(T-(n+1)) = \frac{\frac{P_{0}(n+1-z),T)}{P_{0}(n+1-z,n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)}}{ \frac{P_{0}(n+1-z, n+1)}{P_{0}(n+1-z), n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(k+1)}{h(k)}}\cdot h(T-(n+1)) = [/mm]
Bei dem Doppelbruch kann man mit dem Kehrwert multiplizieren.
Bei den Produkten könnte man anfangen, sie ansatzweise auszuschreiben,
um zusehen was sich kürzen lässt.
$ = [mm] \frac{P_{0}(n+1-z),T)}{P_{0}(n+1-z, n+1)} \cdot \frac{\left( \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)}\right)\cdot h(T-(n+1))}{\frac{h(1)}{h(0)}\cdot \frac{h(2)}{h(1)} \cdot \ldots \cdot \frac{h(z-1)}{h(z)}} [/mm] $
> Ab hier weiss ich nicht mehr weiter :/. Wie kann ich denn
> mit zwei Produktzeichen arbeiten? Wäre sehr nett, wenn ich
> einen Tipp kriegen könnte.
>
> Die Indukstionsbehauptung ist:
> [mm]P_{z}(n+1,T)= \frac{P_{0}(n+1-z,T)}{P_{0}(n+1-z,n+1)}\cdot \prod_{k=0}^{z-1}\frac{h(T-(n+1)+k)}{h(k)}[/mm]
>
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
> https://www.matheboard.de/thread.php?threadid=603860
Ich habe es nicht weiter gerechnet, aber wenn weitere Fragen auftauchen
nur zu.
Gruß
meili
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:49 Mo 16.01.2023 | Autor: | rosimosi |
Hallo meili,
herzlichen Dank. Du kannst Dir nicht vorstellen, wie glücklich ich gerade bin. Ich habe endlich das richtige heraus.
Vielen Dank!
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:54 Di 17.01.2023 | Autor: | rosimosi |
Aufgabe | Den Induktionsschritt für $z=0$ durchführen. |
Hallo,
ich habe noch eine Frage.
Und zwar ist dieser Induktionsbeweis für $z>0$ durchgeführt worden. Bei einer Fallunterscheidung müsste ich noch für $z=0$ den Induktionsschritt berechnen müssen.
Wie würde der Induktionsschritt denn aussehen, wenn ich die Induktion für $z=0$ durchführen möchte?
Meine Überlegung:
ich setze schon am Anfang $z=0$:
Die Induktionsbehauptung für $z=0$ würde dann so aussehen:
$ [mm] P_{0}(n+1,T)= \frac{P_{0}(n,T)}{P_{0}(n,n+1)}\cdot \prod_{k=0}^{-1}\frac{h(T-(n+1)+k)}{h(k)}= \frac{P_{0}(n,T)}{P_{0}(n,n+1)} \cdot [/mm] $
und der Induktionsschritt so:
$ [mm] P_{0}(n+1,T)= \frac{P_{0}(n,T)}{P_{0}(n,n+1)}\cdot [/mm] h(T-(n+1)) = [mm] \frac{\frac{P_{0}(n),T)}{P_{0}(n,n)}\cdot \prod_{k=0}^{(-1)}\frac{h(T-n+k)}{h(k)}}{ \frac{P_{0}(n, n+1)}{P_{0}(n), n)}\cdot \prod_{k=0}^{(-1}\frac{h(k+1)}{h(k)}}\cdot [/mm] h(T-(n+1)) = $
Das Problem ist dann aber, dass ich auf diese Weise eigentlich die Induktionsvoraussetzung nicht benutzen kann und im Doppelbruch das Produktzeichen gleich 1 ist.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:42 Do 19.01.2023 | Autor: | meili |
Hallo rosimosi,
> Den Induktionsschritt für [mm]z=0[/mm] durchführen.
> Hallo,
> ich habe noch eine Frage.
> Und zwar ist dieser Induktionsbeweis für [mm]z>0[/mm] durchgeführt
> worden. Bei einer Fallunterscheidung müsste ich noch für
> [mm]z=0[/mm] den Induktionsschritt berechnen müssen.
> Wie würde der Induktionsschritt denn aussehen, wenn ich
> die Induktion für [mm]z=0[/mm] durchführen möchte?
>
>
> Meine Überlegung:
> ich setze schon am Anfang [mm]z=0[/mm]:
> Die Induktionsbehauptung für [mm]z=0[/mm] würde dann so
> aussehen:
> [mm]P_{0}(n+1,T)= \frac{P_{0}(n,T)}{P_{0}(n,n+1)}\cdot \prod_{k=0}^{-1}\frac{h(T-(n+1)+k)}{h(k)}= \frac{P_{0}(n,T)}{P_{0}(n,n+1)} \cdot [/mm]
Würde die Induktionsbehauptung für [mm]z=0[/mm] so aussehen (rein formal):
[mm]P_{0}(n+1,T)= \frac{P_{0}(n+1,T)}{P_{0}(n+1,n+1)}\cdot \prod_{k=0}^{-1}\frac{h(T-(n+1)+k)}{h(k)}= \frac{P_{0}(n+1,T)}{P_{0}(n+1,n+1)} [/mm] ?
Rein formal wäre der Induktionsanfang für $n=0$ und $z=0$:
[mm] $P_0(0,T) [/mm] = [mm] \frac{P_0(0,T)}{P(0,0)}$
[/mm]
>
> und der Induktionsschritt so:
> [mm]P_{0}(n+1,T)= \frac{P_{0}(n,T)}{P_{0}(n,n+1)}\cdot h(T-(n+1)) = \frac{\frac{P_{0}(n),T)}{P_{0}(n,n)}\cdot \prod_{k=0}^{(-1)}\frac{h(T-n+k)}{h(k)}}{ \frac{P_{0}(n, n+1)}{P_{0}(n), n)}\cdot \prod_{k=0}^{(-1}\frac{h(k+1)}{h(k)}}\cdot h(T-(n+1)) =[/mm]
>
> Das Problem ist dann aber, dass ich auf diese Weise
> eigentlich die Induktionsvoraussetzung nicht benutzen kann
> und im Doppelbruch das Produktzeichen gleich 1 ist.
Das Problem ist, dass in der Induktionsbehauptung kein n-1 vorkommt,
dann könnte man von n auf n+1 schließen.
Würde es inhaltlich sinnvoll sein, dass z Null bleibt, aber n wächst?
Das wären dann mehrere Perioden ohne eine Aufwärtsbewegung davor.
Gibt es Formeln für diesen Fall?
Gruß
meili
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:22 Fr 20.01.2023 | Autor: | rosimosi |
Hallo meili,
meine Induktionsbehauptung sieht auch genauso aus
$ [mm] P_{0}(n+1,T)= \frac{P_{0}(n+1,T)}{P_{0}(n+1,n+1)}\cdot \prod_{k=0}^{-1}\frac{h(T-(n+1)+k)}{h(k)}= \frac{P_{0}(n+1,T)}{P_{0}(n+1,n+1)} [/mm] $
Ich hatte meine Fehler, Dank Ihrer Hilfe, gefunden und verbessert. :)
Ich habe eine Vermutung, wie ich die Aufgabe lösen könnte.
Anscheinend muss ich die Induktionsbehauptung $z=0$ setzen und dann im Induktionsschritt weiter mit $z=0$ rechnen und vergleichen, ob beide Lösungen gleich sind. Und nach meinen Rechnungen kommt auch dasselbe heraus.
> Gibt es Formeln für diesen Fall?
Es gibt eine Formel für die Abwärtsbewegung im Ho-Lee Modell.
Im Binomialbaum von Ho und Lee gibt es nämlich einen Zweig, bei dem der Zustand z immer 0 ist, keine Aufwärtsbewegungen vorhanden sind.
Ich vermute, dass ich deswegen eine Fallunterscheidung durchführen musste.
Denn alle anderen Zweige haben mindestens eine Aufwärtsbewegung.
Ich danke Ihnen sehr für Ihre Rückmeldung. :)
Freundliche Grüße
rosimosi
|
|
|
|