www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Induktionsbeweis
Induktionsbeweis < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Induktionsbeweis: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:03 Sa 14.01.2023
Autor: rosimosi

Aufgabe
[mm] P_{z}(n,T)= \frac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot \prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)} [/mm]
für alle n [mm] \in [/mm] {0,...,T} und z [mm] \in [/mm] {0,...,n}
zu zeigen: n -> n+1

Hallo,
die Gleichung ist auch gleichzeitig meine Induktionsvoraussetzung.
Ich muss das ganze nun für n+1 zeigen.
Den Ansatz habe ich schon aufstellen können.Als Hinweis: [mm] \frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot [/mm] h(T-(n+1)) hat der Professor vorgegeben. Ich muss mit diesem Term den Induktionsschritt beginnen. Mein Ansatz siehtso aus:
Induktionsschritt:
[mm] P_{z}(n+1,T)= \frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot h(T-(n+1))=\frac{\frac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot\prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}}{\frac{P_{0}(n-z,T)}{P_{0}(n-z,n+1)}\cdot \prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}}\cdot [/mm] h(T-(n+1))

Ab hier weiss ich nicht mehr weiter :/. Wie kann ich denn mit zwei Produktzeichen arbeiten? Wäre sehr nett, wenn ich einen Tipp kriegen könnte.

Die Indukstionsbehauptung ist:
[mm] P_{z}(n+1,T)= \frac{P_{0}(n+1-z,T)}{P_{0}(n+1-z,n+1)}\cdot \prod_{k=0}^{z-1}\frac{h(T-(n+1)+k)}{h(k)} [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
https://www.matheboard.de/thread.php?threadid=603860

        
Bezug
Induktionsbeweis: Bedeutung ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:15 Sa 14.01.2023
Autor: Al-Chwarizmi

Hallo rosimosi,

könntest du uns (ev. als kleine Motivation) eine Idee davon übermitteln,
was die hier vorkommenden Funktionen  $ [mm] P_z(n,T)$ [/mm] und  $h(k)$  inhaltlich bedeuten ?
Ganz ohne Vorstellung davon ist das Ganze schon eine sehr abstrakte Übung .....

LG ,    Al-Chw.

Bezug
                
Bezug
Induktionsbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:49 Sa 14.01.2023
Autor: rosimosi

Hallo Al-Chwarizmi,

Ich stelle in meiner Arbeit das Zinsstrukturmodell von Ho und Lee vor. Ho und Lee haben für ihr Modell aus einer risikolosen NKA (Nullkuponanleihe) ausgehend von der Diskontierungsfunktion [mm] $P_{z}(t,T)$ [/mm] in $t=0$ multipliziert mit einer Störfunktion konstruiert.
$ [mm] P_z(n,T) [/mm] $ gibt in einem Binomialmodell den Zerobondpreis in Periode n nach z Aufwärtsbewegungen.

Im mehrperiodgen Binomialmodell ist der Preis einer NKA in Periode n nach z Aufwärtsbewegungen:

[mm] P_{z}(n,T)= \dfrac{P_{z-1}(n-1,T)}{P_{z-1}(n-1,n)}\cdot h(T-n)\\ [/mm]
= [mm] \dfrac{P_{z-2}(n-2,T)}{P_{z-2}(n-2,n)}\cdot \dfrac{h(T-n+1)\cdot h(T-n)}{h(1)}\\ [/mm]
= [mm] \dfrac{P_{z-3}(n-3,T)}{P_{z-3}(n-3,n)}\cdot\dfrac{h(T-n+2)\cdot h(T-n+1) \cdot h(T-n)}{h(2) \cdot h(1)} \\ [/mm]
= [mm] \dfrac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot\dfrac{h(T-n+z-1)\cdots h(T-n)}{h(z-1) \cdots h(1)} [/mm]

und über dieses rekursive Einsetzen muss ich in ein Induktionsbeweis durchführen.


Bezug
        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 Mo 16.01.2023
Autor: meili

Hallo rosimosi,

[willkommenmr]

> [mm]P_{z}(n,T)= \frac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot \prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}[/mm]
>  
> für alle n [mm]\in[/mm] {0,...,T} und z [mm]\in[/mm] {0,...,n}
>  zu zeigen: n -> n+1

>  Hallo,
> die Gleichung ist auch gleichzeitig meine
> Induktionsvoraussetzung.
>  Ich muss das ganze nun für n+1 zeigen.
> Den Ansatz habe ich schon aufstellen können.Als Hinweis:
> [mm]\frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot[/mm] h(T-(n+1)) hat der
> Professor vorgegeben. Ich muss mit diesem Term den
> Induktionsschritt beginnen. Mein Ansatz siehtso aus:
>  Induktionsschritt:
>  [mm]P_{z}(n+1,T)= \frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot h(T-(n+1))=\frac{\frac{P_{0}(n-z,T)}{P_{0}(n-z,n)}\cdot\prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}}{\frac{P_{0}(n-z,T)}{P_{0}(n-z,n+1)}\cdot \prod_{k=0}^{z-1}\frac{h(T-n+k)}{h(k)}}\cdot[/mm]
> h(T-(n+1))

Es ist nicht leicht, bei den Indices und Variablen durchzublicken.
Deshalb nochmal für [mm] $P_{z-1}(n,T)$ [/mm] und [mm] $P_{z-1}(n,n+1)$ [/mm] eingesetzt analog zu der zu beweisenden Formel und danach etwas zusammengefasst:

[mm] $P_{z-1}(n,T) [/mm] =  [mm] \frac{P_{0}(n-(z-1),T)}{P_{0}(n-(z-1),n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)} [/mm] =  [mm] \frac{P_{0}(n-z+1),T)}{P_{0}(n-z+1,n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)} [/mm] = [mm] \frac{P_{0}(n+1-z),T)}{P_{0}(n+1-z,n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)}$ [/mm]

[mm] $P_{z-1}(n,n+1) [/mm] = [mm] \frac{P_{0}(n-(z-1),n+1)}{P_{0}(n-(z-1),n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h((n+1)-n+k)}{h(k)} [/mm] = [mm] \frac{P_{0}(n-z+1, n+1)}{P_{0}(n-z+1), n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(k+1)}{h(k)} [/mm] = [mm] \frac{P_{0}(n+1-z, n+1)}{P_{0}(n+1-z), n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(k+1)}{h(k)}$ [/mm]

>  

Macht dann aus deinem Ansatz:

[mm]P_{z}(n+1,T)= \frac{P_{z-1}(n,T)}{P_{z-1}(n,n+1)}\cdot h(T-(n+1)) = \frac{\frac{P_{0}(n+1-z),T)}{P_{0}(n+1-z,n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)}}{ \frac{P_{0}(n+1-z, n+1)}{P_{0}(n+1-z), n)}\cdot \prod_{k=0}^{(z-1)-1}\frac{h(k+1)}{h(k)}}\cdot h(T-(n+1)) = [/mm]

Bei dem Doppelbruch kann man mit dem Kehrwert multiplizieren.
Bei den Produkten könnte man anfangen, sie ansatzweise auszuschreiben,
um zusehen was sich kürzen lässt.

$ = [mm] \frac{P_{0}(n+1-z),T)}{P_{0}(n+1-z, n+1)} \cdot \frac{\left( \prod_{k=0}^{(z-1)-1}\frac{h(T-n+k)}{h(k)}\right)\cdot h(T-(n+1))}{\frac{h(1)}{h(0)}\cdot \frac{h(2)}{h(1)} \cdot \ldots \cdot \frac{h(z-1)}{h(z)}} [/mm]  $

> Ab hier weiss ich nicht mehr weiter :/. Wie kann ich denn
> mit zwei Produktzeichen arbeiten? Wäre sehr nett, wenn ich
> einen Tipp kriegen könnte.
>  
> Die Indukstionsbehauptung ist:
>  [mm]P_{z}(n+1,T)= \frac{P_{0}(n+1-z,T)}{P_{0}(n+1-z,n+1)}\cdot \prod_{k=0}^{z-1}\frac{h(T-(n+1)+k)}{h(k)}[/mm]
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt:
>  https://www.matheboard.de/thread.php?threadid=603860

Ich habe es nicht weiter gerechnet, aber wenn weitere Fragen auftauchen
nur zu.

Gruß
meili

Bezug
                
Bezug
Induktionsbeweis: Dankeee!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:49 Mo 16.01.2023
Autor: rosimosi

Hallo meili,
herzlichen Dank. Du kannst Dir nicht vorstellen, wie glücklich ich gerade bin. Ich habe endlich das richtige heraus.
Vielen Dank!

Bezug
                
Bezug
Induktionsbeweis: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:54 Di 17.01.2023
Autor: rosimosi

Aufgabe
Den Induktionsschritt für $z=0$ durchführen.

Hallo,
ich habe noch eine Frage.
Und zwar ist dieser Induktionsbeweis für $z>0$ durchgeführt worden. Bei einer Fallunterscheidung müsste ich noch für $z=0$ den Induktionsschritt berechnen müssen.
Wie würde der Induktionsschritt denn aussehen, wenn ich die Induktion für $z=0$ durchführen möchte?


Meine Überlegung:
ich setze schon am Anfang $z=0$:
Die Induktionsbehauptung für $z=0$ würde dann so aussehen:
$ [mm] P_{0}(n+1,T)= \frac{P_{0}(n,T)}{P_{0}(n,n+1)}\cdot \prod_{k=0}^{-1}\frac{h(T-(n+1)+k)}{h(k)}= \frac{P_{0}(n,T)}{P_{0}(n,n+1)} \cdot [/mm]  $

und der Induktionsschritt so:
$ [mm] P_{0}(n+1,T)= \frac{P_{0}(n,T)}{P_{0}(n,n+1)}\cdot [/mm] h(T-(n+1)) = [mm] \frac{\frac{P_{0}(n),T)}{P_{0}(n,n)}\cdot \prod_{k=0}^{(-1)}\frac{h(T-n+k)}{h(k)}}{ \frac{P_{0}(n, n+1)}{P_{0}(n), n)}\cdot \prod_{k=0}^{(-1}\frac{h(k+1)}{h(k)}}\cdot [/mm] h(T-(n+1)) = $

Das Problem ist dann aber, dass ich auf diese Weise eigentlich die Induktionsvoraussetzung nicht benutzen kann und im Doppelbruch das Produktzeichen gleich 1 ist.

Bezug
                        
Bezug
Induktionsbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 07:42 Do 19.01.2023
Autor: meili

Hallo rosimosi,

> Den Induktionsschritt für [mm]z=0[/mm] durchführen.
>  Hallo,
> ich habe noch eine Frage.
> Und zwar ist dieser Induktionsbeweis für [mm]z>0[/mm] durchgeführt
> worden. Bei einer Fallunterscheidung müsste ich noch für
> [mm]z=0[/mm] den Induktionsschritt berechnen müssen.
>  Wie würde der Induktionsschritt denn aussehen, wenn ich
> die Induktion für [mm]z=0[/mm] durchführen möchte?
>  
>
> Meine Überlegung:
>  ich setze schon am Anfang [mm]z=0[/mm]:
>  Die Induktionsbehauptung für [mm]z=0[/mm] würde dann so
> aussehen:
>  [mm]P_{0}(n+1,T)= \frac{P_{0}(n,T)}{P_{0}(n,n+1)}\cdot \prod_{k=0}^{-1}\frac{h(T-(n+1)+k)}{h(k)}= \frac{P_{0}(n,T)}{P_{0}(n,n+1)} \cdot [/mm]

Würde die Induktionsbehauptung für [mm]z=0[/mm]  so aussehen (rein formal):

  [mm]P_{0}(n+1,T)= \frac{P_{0}(n+1,T)}{P_{0}(n+1,n+1)}\cdot \prod_{k=0}^{-1}\frac{h(T-(n+1)+k)}{h(k)}= \frac{P_{0}(n+1,T)}{P_{0}(n+1,n+1)} [/mm] ?

Rein formal wäre der Induktionsanfang für $n=0$ und $z=0$:

[mm] $P_0(0,T) [/mm] = [mm] \frac{P_0(0,T)}{P(0,0)}$ [/mm]

>  
> und der Induktionsschritt so:
>  [mm]P_{0}(n+1,T)= \frac{P_{0}(n,T)}{P_{0}(n,n+1)}\cdot h(T-(n+1)) = \frac{\frac{P_{0}(n),T)}{P_{0}(n,n)}\cdot \prod_{k=0}^{(-1)}\frac{h(T-n+k)}{h(k)}}{ \frac{P_{0}(n, n+1)}{P_{0}(n), n)}\cdot \prod_{k=0}^{(-1}\frac{h(k+1)}{h(k)}}\cdot h(T-(n+1)) =[/mm]
>  
> Das Problem ist dann aber, dass ich auf diese Weise
> eigentlich die Induktionsvoraussetzung nicht benutzen kann
> und im Doppelbruch das Produktzeichen gleich 1 ist.

Das Problem ist, dass in der Induktionsbehauptung kein n-1 vorkommt,
dann könnte man von n auf n+1 schließen.
Würde es inhaltlich sinnvoll sein, dass z Null bleibt, aber n wächst?
Das wären dann mehrere Perioden ohne eine Aufwärtsbewegung davor.
Gibt es Formeln für diesen Fall?

Gruß
meili

Bezug
                                
Bezug
Induktionsbeweis: Vermutung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:22 Fr 20.01.2023
Autor: rosimosi

Hallo meili,

meine Induktionsbehauptung sieht auch genauso aus
$ [mm] P_{0}(n+1,T)= \frac{P_{0}(n+1,T)}{P_{0}(n+1,n+1)}\cdot \prod_{k=0}^{-1}\frac{h(T-(n+1)+k)}{h(k)}= \frac{P_{0}(n+1,T)}{P_{0}(n+1,n+1)} [/mm] $
Ich hatte meine Fehler, Dank Ihrer Hilfe, gefunden und verbessert. :)

Ich habe eine Vermutung, wie ich die Aufgabe lösen könnte.
Anscheinend muss ich die Induktionsbehauptung $z=0$ setzen und dann im Induktionsschritt weiter mit $z=0$ rechnen und vergleichen, ob beide Lösungen gleich sind. Und nach meinen Rechnungen kommt auch dasselbe heraus.

> Gibt es Formeln für diesen Fall?

Es gibt eine Formel für die Abwärtsbewegung im Ho-Lee Modell.
Im Binomialbaum von Ho und Lee gibt es nämlich einen Zweig, bei dem der Zustand z immer 0 ist, keine Aufwärtsbewegungen vorhanden sind.
Ich vermute, dass ich deswegen eine Fallunterscheidung durchführen musste.
Denn alle anderen Zweige haben mindestens eine Aufwärtsbewegung.


Ich danke Ihnen sehr für Ihre Rückmeldung. :)

Freundliche Grüße
rosimosi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de