www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral LN-Funktionen
Integral LN-Funktionen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral LN-Funktionen: Idee
Status: (Frage) beantwortet Status 
Datum: 16:17 Di 15.01.2013
Autor: JamesBlunt

Aufgabe
[mm] \integral_{-\wurzel{3}}^{\wurzel{3}}{x*ln(4-x^{2}) dx} [/mm]

Hi
Da hilft doch die partielle Integration, oder?

Dann setze ich: g´(x) = x und h(x) = [mm] ln(4-x^{2}) [/mm]
Demnach folgt: g(x)= [mm] 0,5x^{2} [/mm] und h´(x)= ?

Da weiß ich nicht weiter, da ich nur weiß: ln(x)-> Stammfunktion: x*ln(x)-x

Wer kann helfen?
Danke


        
Bezug
Integral LN-Funktionen: Substitution
Status: (Antwort) fertig Status 
Datum: 16:38 Di 15.01.2013
Autor: Steffi21

Hallo, mache zunächst Substitution

[mm] u:=4-x^2 [/mm]

[mm] \bruch{du}{dx}=-2x [/mm]

[mm] dx=-\bruch{du}{2x} [/mm]

[mm] \integral_{}^{}{-x*ln(u)*\bruch{du}{2x}} [/mm]

[mm] =-\bruch{1}{2}\integral_{}^{}{ln(u)du} [/mm]

jetzt erst partielle Integration

g=ln(u)

[mm] g'=\bruch{1}{u} [/mm]

f'=1

f=u

[mm] =-\bruch{1}{2}*[u*ln(u)-\integral_{}^{}{1du}] [/mm]

jetzt ist es nicht mehr schwer, dann Rücksubstitution und Grenzen einsetzen

Steffi




Bezug
                
Bezug
Integral LN-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:47 Di 15.01.2013
Autor: JamesBlunt

Oke, dann führe ich die Rücksubstitution durch:

=-0,5 * [mm] [(4-x^{2})*ln(4-x^{2})- \integral_{}^{}{1du dx}] [/mm]

Was mache ich bei dem hinteren Teil?
was setze ich dür du, bzw. dx ein?

Lg

Bezug
                        
Bezug
Integral LN-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Di 15.01.2013
Autor: JamesBlunt

Oke, dann führe ich die Rücksubstitution durch:

=-0,5 * $ [mm] [(4-x^{2})\cdot{}ln(4-x^{2})- \integral_{}^{}{1du dx}] [/mm] $

Was mache ich bei dem hinteren Teil?
was setze ich dür du, bzw. dx ein?

Lg

Sorry, der Status eben war falsch.

Bezug
                        
Bezug
Integral LN-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Di 15.01.2013
Autor: schachuzipus

Hallo JamesBlunt,


> Oke, dann führe ich die Rücksubstitution durch:

Na, erstmal musst du doch das hintere Integral noch lösen ...

[mm]-\frac{1}{2}\cdot{}\left[u\ln(u)-\int{1 \ du}\right]=-\frac{1}{2}\cdot{}\left[u\ln(u)-u\right][/mm]

Nun resubstituieren, dann hast du alles wieder in der Variable x stehen und kannst die ursprünglichen Grenzen einsetzen.

Alternativ kannst du auch die Grenzen (in x) in Grenzen in u überführen und dir die Resubstitution sparen ...


>  
> =-0,5 * [mm][(4-x^{2})*ln(4-x^{2})- \integral_{}^{}{1du dx}][/mm]
>  
> Was mache ich bei dem hinteren Teil?
>  was setze ich dür du, bzw. dx ein?
>  
> Lg

Gruß

schachuzipus


Bezug
                                
Bezug
Integral LN-Funktionen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 16:59 Di 15.01.2013
Autor: JamesBlunt

Gut danke. Dann hab ich dort [mm] -\wurzel{3} [/mm] und + [mm] \wurzel{3} [/mm] stehen.. Davor noch die -0,5.. aber da man mit 0 multipliziert kommt auch 0 raus.

Danke :)

Bezug
                                        
Bezug
Integral LN-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:10 Di 15.01.2013
Autor: Steffi21

Hallo,

die Stammfunktion lautet

[mm] \bruch{1}{2}(4-x^2)-\bruch{1}{2}(4-x^2)*ln(4-x^2) [/mm]

das Integral hat wohl das Ergebnis Null, der Faktor [mm] ln(4-x^2) [/mm] wird zwar für beide Grenzen gleich Null, somit ist der 2. Summand gleich Null, aber der 1. Summand ist für beide Grenzen ungleich Null

Steffi



Bezug
                                                
Bezug
Integral LN-Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 15.01.2013
Autor: JamesBlunt

es kommt dennoch insgesamt null raus oder?

Bezug
                                                        
Bezug
Integral LN-Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:06 Di 15.01.2013
Autor: MathePower

Hallo JamesBlunt,


> es kommt dennoch insgesamt null raus oder?


Ja.


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de