www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration von einem Bruch
Integration von einem Bruch < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration von einem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Mi 22.04.2009
Autor: Karl87

Hey Leute,
habe ein Problem bei folgender Aufgabe:

[mm] \integral_{0}^{1}\bruch{1}{1+x^{2}}{ dx} [/mm]

Wie integriere ich diesen Bruch?

LG

        
Bezug
Integration von einem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Mi 22.04.2009
Autor: schachuzipus

Hallo Karl,

> Hey Leute,
>  habe ein Problem bei folgender Aufgabe:
>  
> [mm]\integral_{0}^{1}\bruch{1}{1+x^{2}}{ dx}[/mm]
>  
> Wie integriere ich diesen Bruch?

Mit Substitution, versuche mal [mm] $x:=\tan(u)$ [/mm] ...

>  
> LG


Gruß

schachuzipus

Bezug
                
Bezug
Integration von einem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:37 Mi 22.04.2009
Autor: Karl87

Okay, Substitution war mir schon klar, aber wieso tan(u)? Was bringt mir das?

LG

Bezug
                        
Bezug
Integration von einem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Mi 22.04.2009
Autor: schachuzipus

Hallo nochmal,



> Okay, Substitution war mir schon klar, aber wieso tan(u)?

Weil's damit klappt!

> Was bringt mir das?

Damit kannst du das Integral lösen, das bringt es...

Mach' mal, dann siehst du, dass diese Substitution etwas bringt!

>  
> LG

Gruß

schachuzipus

Bezug
                                
Bezug
Integration von einem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Mi 22.04.2009
Autor: Karl87

Tut mir leid, vielleicht stell ich mich auch grad n bissl doof an, aber wie gehts dann weiter?

LG

Bezug
                                        
Bezug
Integration von einem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 13:50 Mi 22.04.2009
Autor: schachuzipus

Hallo nochmal,

> Tut mir leid, vielleicht stell ich mich auch grad n bissl
> doof an, aber wie gehts dann weiter?

Hast du denn schonmal ein Integral mit Substitution erschlagen?

Du musst alles mit x durch u ersetzen.

Also mit [mm] $x=\tan(u)$ [/mm] ist [mm] $\frac{dx}{du}=1+\tan^2(u)$, [/mm] also [mm] $dx=(1+\tan^2(u)) [/mm] \ du$

Nun ersetze mal alles im Ausgangsintegral (am besten ohne Grenzen).

Dann löse das Integral (es wird puppieinfach), dann resubstituieren, also u wieder in x ausdrücken und die Grenzen einsetzen ...


>  
> LG

Gruß

schachuzipus

Bezug
                                                
Bezug
Integration von einem Bruch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Mi 22.04.2009
Autor: Karl87

Nein, habe noch nie bei einer Integration substituiert!

Achso, okay...als habe ich dann: [mm] \integral_{}^{}\bruch{1}{1+ tan(u)}(1 [/mm] + tan(u)) du  ?

LG

Bezug
                                                        
Bezug
Integration von einem Bruch: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Mi 22.04.2009
Autor: Steffi21

Hallo, du hast aber doch in der 11 und 12 schon substituiert, so jetzt schreibe mal 1+tan(u) auf den Bruchstrich, was du dann benötigst hast du schon mehr als genug gemacht, du bekommst ein ganz ganz einfach zu lösendes Integral, dann aber resubstituieren, Steffi

Bezug
                                                        
Bezug
Integration von einem Bruch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:19 Mi 22.04.2009
Autor: schachuzipus

Hallo nochmal,

> Nein, habe noch nie bei einer Integration substituiert!
>  
> Achso, okay...als habe ich dann:
> [mm]\integral_{}^{}\bruch{1}{1+ tan(u)}(1[/mm] + tan(u)) du  ?

Nana, wohin sind die Quadrate beim Tangens verschwunden?

>  
> LG


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de