www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Kombinatorik
Kombinatorik < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Mo 04.01.2010
Autor: freak900

Hallo, ich habe noch ein kniffliges Beispiel, wo ich nicht weiter komme.
Könnt ihr mir bitte helfen?

Aufgabe
Wie viele verschiedene Boxkämpfe können zwischen acht Boxern durchgeführt werden?

Danke!

Liebe Grüße!

        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Mo 04.01.2010
Autor: Steffi21

Hallo, nummeriere die Boxer von 1 bis 8,
Boxer 1 boxt gegen 2, 3, 4, 5, 6, 7, 8 macht 7 Kämpfe
Boxer 2 boxt gegen 3, 4, 5 ...
Boxer 3 boxt gegen
.
.
.
Boxer 7

Steffi

Bezug
                
Bezug
Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Mo 04.01.2010
Autor: freak900

Stimmt, das wäre eine gute Idee, aber gibt es keine Möglichkeit das zu berechnen?

Danke!

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 19:38 Mo 04.01.2010
Autor: Steffi21

Hallo, sicherlich kann man die Anzahl der Kämpfe berechnen, ich (wir) werden aber keine fertige Lösung bieten, überlege dir den mathematischen Zusammenhang, rechne los, dann kannst du auch die Anzahl der Kämpfe für 12, 15, 30, n Boxer berechnen, nun mal ran an´s Ergebnis, Steffi

Bezug
                                
Bezug
Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Mo 04.01.2010
Autor: freak900

ok, hast Recht;

also, das sind: 7+6+5+4+3+2+1= 28

aber wie komme ich jetzt anders drauf?

[mm] \vektor{8 \\ 2} [/mm] = 28

Wie das? Ich wähle 2 Personen aus 8 heraus. Wie viele Möglichkeiten gibt es? Reiheinfolge wird nicht berücksichtigt. Das heißt, wenn A gegen B, und B gegen A wird richtigerweise nur einmal gezählt?
Stimmt das so?

DANKE!!!!!!

Bezug
                                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Mo 04.01.2010
Autor: steppenhahn

Hallo freak900,

> ok, hast Recht;
>  
> also, das sind: 7+6+5+4+3+2+1= 28
>  
> aber wie komme ich jetzt anders drauf?
>
> [mm]\vektor{8 \\ 2}[/mm] = 28
>  
> Wie das? Ich wähle 2 Personen aus 8 heraus. Wie viele
> Möglichkeiten gibt es? Reiheinfolge wird nicht
> berücksichtigt. Das heißt, wenn A gegen B, und B gegen A
> wird richtigerweise nur einmal gezählt?
>  Stimmt das so?

Genau so ist es. Der Binomialkoeffizient [mm] \vektor{8\\2} [/mm] liefert die Anzahl der Möglichkeiten, aus einer Menge von 8 Elementen eine Menge von 2 Elementen herauszugreifen. Da es sich hier um Mengen handelt, ist die Reihenfolge egal! [mm] \{1,2\} [/mm] = [mm] \{2,1\} [/mm] wird vom Binomialkoeffizienten also (richtigerweise, bei dieser Anwendung oben) nur einmal gezählt.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de