www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Konstanten bestimmen
Konstanten bestimmen < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konstanten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Di 06.07.2010
Autor: dynaDE

Aufgabe
Bestimme die Konstanten a,b,c der gebrochen rationalen Funktion [mm] f(x)=\bruch{ax+b}{x^2+c} [/mm] , derart, dass f(x) in [mm] x_1 [/mm] = -2 einen Pol und in [mm] x_2 [/mm] =1 einen relativen Extremwert mit dem Funktionswert -0,25 besitzt.

Ich habe mich erstmal an dem c versucht. Für einen Pol gilt ja Z != 0 und N = 0

also
0 = [mm] x^2 [/mm] + C
[mm] x^2 [/mm] = -C
[mm] -2^2 [/mm] = -C
4 = -C
C = -4

Kann das jemand bestätigen?

Bei den Extremwerten hänge ich etwas. Hat da jmd einen Ansatz für mich?

Vielen Dank schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konstanten bestimmen: Hinweise
Status: (Antwort) fertig Status 
Datum: 13:56 Di 06.07.2010
Autor: Roadrunner

Hallo dynaDE!


Deine bisherige Rechnung ist okay.

Für den Extremwert muss gelten:
[mm] $$f'(x_e) [/mm] \ = \ f'(1) \ = \ 0$$
Zudem ist hier gegeben:
$$f(1) \ = \ [mm] \bruch{a*1+b}{1^2+c} [/mm] \ = \ ... \ = \ [mm] -\bruch{1}{4}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Konstanten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Di 06.07.2010
Autor: dynaDE

Hm irgendwie ist der Groschen bei mir noch nicht gefallen.

Wenn ich die f'(x) ermittle bleiben ja trotzdem a und b erhalten oder?

Bezug
                        
Bezug
Konstanten bestimmen: neue Bestimmungsgleichungen
Status: (Antwort) fertig Status 
Datum: 14:41 Di 06.07.2010
Autor: Roadrunner

Hallo dynaDE!


Ja, da hast Du Recht. Aber Du erhältst damit auch eine neue Bestimmungsgleichung, wenn Du den Wert [mm] $x_e [/mm] \ = \ 1$ einsetzt.


Gruß vom
Roadrunner


Bezug
                                
Bezug
Konstanten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:58 Di 06.07.2010
Autor: dynaDE

hm wenn ich richtig abgeleitet habe, dann müsste f'(x) folgendes sein, wobei ich für C = -4 genutzt habe.

f'(x)= [mm] \bruch{-ax^2 - 4a + 2xb}{(x - 4)^2} [/mm]

Wenn ich [mm] X_2 [/mm] = 1 einsetze:

f'(x)= [mm] \bruch{-5a + 2b}{9} [/mm]  ?

Ich wüsste nicht wie ich weiter vorgehen sollte.

Bezug
                                        
Bezug
Konstanten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Di 06.07.2010
Autor: Steffi21

Hallo, du kennst

[mm] f(x)=\bruch{ax+b}{x^{2}-4} [/mm]

[mm] f'(x)=\bruch{a(x^{2}-4)-(ax+b)2x}{(x^{2}-4)^{2}} [/mm]

deine 1. Ableitung ist nicht korrekt

jetzt gilt:

f(1)=-0,25 du bekommst [mm] \bruch{a+b}{-3}=-0,25 [/mm]

f'(1)=0 du bekommst [mm] \bruch{-3a-(a+b)2}{9}=0 [/mm]

Steffi

Bezug
                                                
Bezug
Konstanten bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:28 Di 06.07.2010
Autor: dynaDE

Hm sind meine Lösungen nicht das gleiche? (Ich habe die Klammern hatte ich nur schon aus multipliziert:)

Die Frage ist, wie werden mir diese Therme weiterhelfen um a und b zu bestimmen.

Bezug
                                                        
Bezug
Konstanten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Di 06.07.2010
Autor: abakus


> Hm sind meine Lösungen nicht das gleiche? (Ich habe die
> Klammern hatte ich nur schon aus multipliziert:)

Hallo?!?
[mm] x^2-4 [/mm] ist NICHT [mm] (x-4)^2. [/mm] Letzteres wäre nach binomischer Formel [mm] x^2-8x+16. [/mm]
Gruß Abakus

>  
> Die Frage ist, wie werden mir diese Therme weiterhelfen um
> a und b zu bestimmen.


Bezug
                                                        
Bezug
Konstanten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:46 Di 06.07.2010
Autor: fred97


> Hm sind meine Lösungen nicht das gleiche? (Ich habe die
> Klammern hatte ich nur schon aus multipliziert:)
>  
> Die Frage ist, wie werden mir diese Therme weiterhelfen um
> a und b zu bestimmen.

Du hast:

          (1)    $ [mm] \bruch{a+b}{-3}=-0,25 [/mm] $

und     (2)    $ [mm] \bruch{-3a-(a+b)2}{9}=0 [/mm] $

Aus (2) erhälst Du:   [mm] $\bruch{(a+b)^2}{9}= [/mm] - [mm] \bruch{1}{3}a$ [/mm]

und aus (1):    [mm] $\bruch{(a+b)^2}{9}= \bruch{1}{16}$ [/mm]

Hilft das ?

FRED

Bezug
                                                                
Bezug
Konstanten bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Di 06.07.2010
Autor: Steffi21

Hallo, fred97 (a+b)*2, die 2 ist ein Faktor, kein Exponent, Steffi

Bezug
                                                                        
Bezug
Konstanten bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Di 06.07.2010
Autor: fred97


> Hallo, fred97 (a+b)*2, die 2 ist ein Faktor, kein Exponent,
> Steffi

Hallo Steffi,

meine neue Brille ist in Arbeit

FRED

Bezug
                                        
Bezug
Konstanten bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Di 06.07.2010
Autor: leduart

Hallo
du bekommst 2 Gleichungen für a und b, wenn du f(1)=-0.25 und f'(1)=0 setzt.
Gruss leduart

Bezug
                                                
Bezug
Konstanten bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:17 Di 06.07.2010
Autor: dynaDE

Sorry ich resigniere. Das scheint mir zu hoch zu sein ;)

Bezug
                                                        
Bezug
Konstanten bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Di 06.07.2010
Autor: dynaDE

Ok, so wurde nun gelöst.

[mm] b=\bruch{5}{4} [/mm] und [mm] a=\bruch{-1}{2} [/mm] und c = -4

Danke an alle!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de