Koordinaten von Punkt < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Der Lichtkegel der Lampe erzeugt auf dem Dorfplatz einen Lichtkreis. Der Öffnungswinkel des Lichtkegels beträgt [mm] \alpha= [/mm] 90 grad. Für die Lampe soll eine neue Position im Punkt K gefunden werden, so dass die Punkte A(-2,5,0) B(-5,-5,0) und C(5,-5,0) auf dem Rand des erzeugten Lichtkreises liegen.
Bestimme den Mittelpunkt M des Lichtkreises umd ermitteln sie die Koordinaten des Punktes K.
Zur Kontrolle M(0/-1,05/0) |
Guten Tag!
Ich habe bereits versuch Punkt K auszurechnen, wo ich K(0,5,k) raus habe, welches offensichtlich falsch ist...
Auf den Mittelpunkt komm ich gar nicht...
Könnte vielleicht einer mir erklären wie das zu lösen ist...
Meine Rechnung:
90grad= cos^-1(0)
0= (BC [mm] \* [/mm] BK) / Wurzel von BC [mm] \* [/mm] Wurzel von BK)
0= [mm] \bruch{(7,-10,0) \* (2k/ k-5/ k)}{ \wurzel{149} \* \wurzel{(2k)^2+(k-5)^2+(k)^2}} [/mm]
0= 14k -10k +50
-50= - 50 | k=0 und k=5
Punkt K (0,5,k)
.....
Beim Mittelpunkt dachte ich OM= 1/2 (OX+OY), aber weder mit den punkten A,B und C komme ich auf das Kontrollergebnis...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:12 Fr 24.04.2020 | Autor: | meili |
Hallo Thenanama,
> Der Lichtkegel der Lampe erzeugt auf dem Dorfplatz einen
> Lichtkreis. Der Öffnungswinkel des Lichtkegels beträgt
> [mm]\alpha=[/mm] 90 grad. Für die Lampe soll eine neue Position im
> Punkt K gefunden werden, so dass die Punkte A(-2,5,0)
> B(-5,-5,0) und C(5,-5,0) auf dem Rand des erzeugten
> Lichtkreises liegen.
>
> Bestimme den Mittelpunkt M des Lichtkreises umd ermitteln
> sie die Koordinaten des Punktes K.
> Zur Kontrolle M(0/-1,05/0)
> Guten Tag!
>
> Ich habe bereits versuch Punkt K auszurechnen, wo ich
> K(0,5,k) raus habe, welches offensichtlich falsch ist...
> Auf den Mittelpunkt komm ich gar nicht...
> Könnte vielleicht einer mir erklären wie das zu lösen
> ist...
> Meine Rechnung:
> 90grad= cos^-1(0)
>
> 0= (BC [mm]\*[/mm] BK) / Wurzel von BC [mm]\*[/mm] Wurzel von BK)
>
> 0= [mm]\bruch{(7,-10,0) \* (2k/ k-5/ k)}{ \wurzel{149} \* \wurzel{(2k)^2+(k-5)^2+(k)^2}}[/mm]
>
> 0= 14k -10k +50
> -50= - 50 | k=0 und k=5
>
> Punkt K (0,5,k)
Mir scheint, du wendest den Kosinussatz auf das Dreieck BCK an,
aber so ganz ist mir deine Idee dazu nicht klar.
Die Punkte A, B und C liegen auf dem Rand des Kreises, den der Lichtkegel
auf dem Dorfplatz beschreibt. Dieser Kreis ist der Umkreis des Dreiecks ABC.
Die Lampe im Punkt K muss genau senkrecht über dem Mittelpunkt M
dieses Umkreises liegen. Deshalb hat K dieselbe x-Komponente und
dieselbe y-Komponente wie M.
Die Höhe in der die Lampe aufgehängt wird (z-Komponente von K), hängt
vom Umkreisradius und dem Öffnungswinkel [mm] $\alpha [/mm] = 90°$ ab.
Den Umkreisradius kann man als Abstand eines der Punkte A, B oder C und M berechnen.
> .....
> Beim Mittelpunkt dachte ich OM= 1/2 (OX+OY), aber weder mit
> den punkten A,B und C komme ich auf das Kontrollergebnis...
Die Mittelsenkrechten der Seiten AB, BC und CA schneiden sich im
Mittelpunkt M des Umkreis.
Die Mittelsenkrechte der Seite BC ist die y-Achse. Jetzt braucht man
noch eine Gerade, die durch den Mittelpunkt der Strecke AB geht und
senkrecht auf der Strecke AB steht. Im Schnittpunkt dieser Geraden
mit der y-Achse liegt M. (Geht auch mit der Geraden, die durch den Mittelpunkt der
Strecke AC geht und senkrecht auf der Strecke AC steht.)
>
>
>
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruß
meili
|
|
|
|