www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abiturvorbereitung" - Kreis Gerade Schnittpunkt
Kreis Gerade Schnittpunkt < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kreis Gerade Schnittpunkt: Winkel
Status: (Frage) beantwortet Status 
Datum: 14:08 Di 18.03.2014
Autor: MathematikLosser

Aufgabe
Berechne die Schnittpunkte und einen Schnittwinkel des Kreises k mit der Geraden g.
c) [k(-3/2);5]; g:x+2y=6

Mein Versuch:
die Kreisgleichung lautet:
[mm] (x+3)^2+(y-2)^2=5 [/mm]
g: [mm] y=-\bruch{x}{2}+3 [/mm]
Nun g in k einsetzen:

[mm] (x+3)^2+(\bruch{x}{2}+3)^2=5 [/mm]

[mm] x^2+6x+9+(\bruch{x^2}{4}+\bruch{6x}{2}+9)=5 [/mm]

[mm] \bruch{5x^2}{4}+\bruch{18x}{2}+18=5 [/mm]
[mm] \bruch{5x^2}{4}+\bruch{18x}{2}+13=0 [/mm]

[mm] x1,2=\bruch{\bruch{-18}{2}\pm \wurzel{\bruch{-18}{2}^2-4*\bruch{5}{4}*13}}{2*\bruch{5}{4}} [/mm]

[mm] =\bruch{-9 \pm \wurzel{16} }{2,5} [/mm]

[mm] \bruch{-9 \pm 4}{2,5} [/mm]

S1=-2
S2=-5,2

Nun die y Werte berechnen:

[mm] y=\bruch{2}{2}+3 [/mm]
y=4
T: -2x+4y=d
Nun Mittels Skalarprodukt den Winkel berechnen?

=> [mm] \bruch{\vektor{-2 \\ 4}*\vektor{1 \\ 2}}{\wurzel{4+16}*\wurzel{1+4}} [/mm]

[mm] =\bruch{-2+8}{\wurzel{20}*\wurzel{5}} [/mm]

[mm] \alpha [/mm] = [mm] \bruch{6}{10} [/mm]

cos (0,6)= 53,13010235°
Der Schnittwinkel beträgt somit 53,13°

Stimmen meine Überlegungen?


        
Bezug
Kreis Gerade Schnittpunkt: Korrekturen
Status: (Antwort) fertig Status 
Datum: 14:27 Di 18.03.2014
Autor: Roadrunner

Hallo MathematikLosser!


>  die Kreisgleichung lautet:
>  [mm](x+3)^2+(y-2)^2=5[/mm]

[notok] Die Kreisgleichung lautet:   [mm] $(x+3)^2+(y-2)^2 [/mm] \ = \ [mm] 5^{\red{2}}$ [/mm]


>  g: [mm]y=-\bruch{x}{2}+3[/mm]
>  Nun g in k einsetzen:
>  
> [mm](x+3)^2+(\bruch{x}{2}+3)^2=5[/mm]

[notok] Abgesehen von dem fehlenden Quadrat muss es hier lauten nach dem Einsetzen:

[mm] $(x+3)^2+\left(\red{-}\bruch{x}{2}+3\red{-2}\right)^2 [/mm] \ = \ [mm] 5^2$ [/mm]

[mm] $(x+3)^2+\left(-\bruch{x}{2}+1\right)^2 [/mm] \ = \ 25$


Gruß vom
Roadrunner

Bezug
                
Bezug
Kreis Gerade Schnittpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 18.03.2014
Autor: MathematikLosser

Aufgabe
k: [-3/2);5]; g: x+2y=6

[mm] (x+3)^2+(y-2)^2=25 [/mm]

[mm] y=\bruch{-x}{2}+3 [/mm]

=> [mm] (x+3)^2+(-\bruch{-x}{2}+3-2)^2=25 [/mm]

[mm] x^2+6x+9+(\bruch{x^2}{4}-\bruch{2x}{2}+1)=25 [/mm]

[mm] \bruch{5x^2}{4}+5x+10=25 [/mm]

[mm] \bruch{5x^2}{4}+5x-15=0 [/mm]

x1=-6
x2=2


Meine Frage ist nun jedoch, wie ich mir den Schnittwinkel berechnen kann.

y1=6
y2=2

Meine Idee wäre nun die Tangenten zu den Schnittpunkten mittels spaltform zu legen:

(x+3)*(-6+3)+(y-2)*(6-2)=25

(-3x-9)+(4y-8)=25
-3x+4y-17=25
-3x+4y=42

Der Schnittwinkel wäre nun hier mittels Skalarprodukts zu berechnen:

[mm] =>\bruch{\vektor{-3 \\ 4}*\vektor{1 \\ 2}}{\wurzel{9+16}*\wurzel{1+4}} [/mm]

[mm] =\bruch{-3+8}{\wurzel{25}*\wurzel{5}} [/mm]
[mm] =\bruch{5}{11,18033989} [/mm]
=0,447213595
cos(0,447213595)= 63,43494885°
[mm] \alpha=63,43° [/mm]

Stimmen meine Überlegungen?


Bezug
                        
Bezug
Kreis Gerade Schnittpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Di 18.03.2014
Autor: Steffi21

Hallo

[Dateianhang nicht öffentlich]

die Punkte A und B liegen auf der Gerade [mm] y=-\bruch{1}{2}x+3, [/mm] der Richtungsvektor lautet [mm] \vektor{-1 \\ 0,5} [/mm]
die Tangente an Kreis im Punkt B ist die Gerade [mm] y=\bruch{3}{4}x+10,5, [/mm] der Richtungsvektor lautet [mm] \vektor{4 \\ 3} [/mm]

nun erneut den Winkel berechnen

Steffi


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de