www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Kubische Spline Interpolation
Kubische Spline Interpolation < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kubische Spline Interpolation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:05 Do 17.09.2015
Autor: RunOrVeith

Aufgabe
Führen sie eine kubische Splineinterpolation der Funktion [mm] f(x)=cos(\pi*0.5*x) [/mm] im Intervall [-1,1] mit den Sttzstellen [mm] x_0 [/mm] = -1, [mm] x_1=0 [/mm] und [mm] x_2=1 [/mm] mit eingespannten Randbedingungen durch, d.h f'(-1)=p'(-1) und f'(1)=p'(1).
Hinweis: Man kann viel Rechenarbeit sparen, wenn man sich durch eine Symmetriebetrachtung auf das Teilintervall [0,1] beschränkt.

Hallo,

ich habe eher eine allgemeine Frage: Warum wird die Interpolation nicht besser, wenn ich mich auf ein Teilintervall beschränke?

Tue ich dies nämlich, so komme ich auf das LGS
[mm] \pmat{ 1 & 1 & -1 \\ 2 & 3 & -\pi*0.5 }, [/mm]
was mich auf [mm] p_2(x)=1+(-3+0.5\pi)x^2+(2-0.5\pi)x^3 [/mm] bringt.
Wegen der Symmetrie ist [mm] p_1(x)=-p_2(x), [/mm] also
[mm] p(x)=\begin{cases} -(p_2(x), & \mbox{für } x \in [-1,0] \\ p_2(x), & \mbox{für } x \in (0,1] \end{cases} [/mm]

Dies funktioniert jedoch nur, wenn ich die Randbedingung auf das kleinere Intervall anwende, also p'(0)=f'(0).
Dies führt doch eigentlich zu einer Verbesserung des Interpolation, da ich mehr Bedingungen auf einem kleineren Intervall habe, oder?

Wenn ich mich nicht auf das Teilintervall beschränke, und auf dem ganzen Intervall interpoliere, so erhalte ich die Bedingungen
[mm] p_1(-1)=0, p_1(0)=p_2(0)=1, p_2(1)=0 [/mm] für Wertgleichheit an den Stützstellen,
[mm] p_1'(-1)=0.5\pi, p_2'(1)=-0.5\pi [/mm] für die Randbedingungen,
[mm] p_1''(0)=p_2''(0) [/mm] für Stetigkeit der 2. Ableitung
[mm] p_1'(0)=p_2'(0) [/mm] für Stetigkeit der 1. Ableitung

Löse ich dieses 8x8 LGS, so  komme ich genau auf die selben Werte.
(Nachgerechnet mit Computer)
Warum ist das so?


Vielen Dank!


        
Bezug
Kubische Spline Interpolation: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 Fr 18.09.2015
Autor: meili

Hallo,

> Führen sie eine kubische Splineinterpolation der Funktion
> [mm]f(x)=cos(\pi*0.5*x)[/mm] im Intervall [-1,1] mit den Sttzstellen
> [mm]x_0[/mm] = -1, [mm]x_1=0[/mm] und [mm]x_2=1[/mm] mit eingespannten Randbedingungen
> durch, d.h f'(-1)=p'(-1) und f'(1)=p'(1).
>  Hinweis: Man kann viel Rechenarbeit sparen, wenn man sich
> durch eine Symmetriebetrachtung auf das Teilintervall [0,1]
> beschränkt.
>  Hallo,
>  
> ich habe eher eine allgemeine Frage: Warum wird die
> Interpolation nicht besser, wenn ich mich auf ein
> Teilintervall beschränke?
>  
> Tue ich dies nämlich, so komme ich auf das LGS
>  [mm]\pmat{ 1 & 1 & -1 \\ 2 & 3 & -\pi*0.5 },[/mm]

[ok]
Das LGS schon etwas umgeformt.

>  was mich auf
> [mm]p_2(x)=1+(-3+0.5\pi)x^2+(2-0.5\pi)x^3[/mm] bringt.

[ok]

>  Wegen der Symmetrie ist [mm]p_1(x)=-p_2(x),[/mm] also
>  [mm]p(x)=\begin{cases} -(p_2(x), & \mbox{für } x \in [-1,0] \\ p_2(x), & \mbox{für } x \in (0,1] \end{cases}[/mm]

Nicht so ganz, sondern:

[mm]p(x)=\begin{cases} p_2(-x), & \mbox{für } x \in [-1,0] \\ p_2(x), & \mbox{für } x \in (0,1] \end{cases}[/mm]

>  
> Dies funktioniert jedoch nur, wenn ich die Randbedingung
> auf das kleinere Intervall anwende, also p'(0)=f'(0).

[ok]

>  Dies führt doch eigentlich zu einer Verbesserung des
> Interpolation, da ich mehr Bedingungen auf einem kleineren
> Intervall habe, oder?

Nein, man hat noch gleich viele Bedingungen, nutzt sie nur anders.

>
> Wenn ich mich nicht auf das Teilintervall beschränke, und
> auf dem ganzen Intervall interpoliere, so erhalte ich die
> Bedingungen
> [mm]p_1(-1)=0, p_1(0)=p_2(0)=1, p_2(1)=0[/mm] für Wertgleichheit an
> den Stützstellen,
>  [mm]p_1'(-1)=0.5\pi, p_2'(1)=-0.5\pi[/mm] für die
> Randbedingungen,
>  [mm]p_1''(0)=p_2''(0)[/mm] für Stetigkeit der 2. Ableitung
>  [mm]p_1'(0)=p_2'(0)[/mm] für Stetigkeit der 1. Ableitung
>  
> Löse ich dieses 8x8 LGS, so  komme ich genau auf die
> selben Werte.
>  (Nachgerechnet mit Computer)
>  Warum ist das so?
>  
>
> Vielen Dank!
>  

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de