Kurvendiskussion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:00 Mi 24.06.2009 | Autor: | chris999 |
Aufgabe | Für welche Werte von t ist die Funktion f mit f(x) = [mm] t\wurzel{x} [/mm] für x größer gleich 1
und [mm] \bruch{1}{4}*(3x²+4t-3) [/mm] für x kleiner 1
an der Stelle x = 1 stetig? Bei welchem Wert von t ist sie an der Stelle x auch differenzierbar? |
hi nochmal.
also die stetigkeit im punkt eins prüf ich ja indem ich den lim beider teilfunktionen mache x gegen 1. dann kommt t heraus bei beiden. also denk ich mal ist sie für alle t stetig.
aber bez. der differenzierbarkeitsfrage bin ich mir nicht ganz sicher. der lim von f'(x), wobei x gegen 1 geht, ist verschieden von beiden... heißt das die funktion ist nicht differenzierbar in punkt eins oder
muss ich die differenzierbarkeit mit dem differenzialquotienten lösen??
lg
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo, den 1. Teil hast du gezeigt, der Grenzwert ist gleich t, setze jetzt die Ableitungen gleich, wie ist dann t zu wählen, damit die Ableitungen an der Stelle x=1 0bereinstimmen, [mm] \bruch{t}{2\wurzel{x}}=\bruch{3}{2}x, [/mm] Steffi
|
|
|
|