www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - LGS mit Parameter
LGS mit Parameter < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

LGS mit Parameter: Übung
Status: (Frage) beantwortet Status 
Datum: 13:51 Di 12.03.2013
Autor: ellegance88

Aufgabe
Seien [mm] v_1:=(2,1,2)^T v_2:=(1,r,2)^T v_3:=(1,1,r)^T [/mm] und sei [mm] A_r [/mm] Element [mm] R^3^x^3 [/mm] die Matrix, deren i-te Spalte der Vektor [mm] v_i [/mm] ist

1) Sei b = (1,2,-1) Element [mm] R^3^x^1. [/mm] Bestimmen Sie [mm] Lös(A_r,b) [/mm] (in Abhängigkeit von r)

[mm] \begin{pmatrix} 2 & 1 & 1 \left| 1 \\ 1 & r & 1 \left| 2 \\ 2 & 2 & r \left| -1 \end{pmatrix} [/mm]

dann habe ich  zweite Zeile mal 2 minus die erste und dritte Zeile minus die erste.

[mm] \begin{pmatrix} 2 & 1 & 1 \left| 1 \\ 0 & (2r-1) & 1 \left| 3 \\ 0 & 1 & (r-1) \left| -2 \end{pmatrix} [/mm]

dann habe ich die dritte Zeile mal (2r-1) - die neue zweite Zeile gerechnet.

[mm] \begin{pmatrix} 2 & 1 & 1 \left| 1 \\ 0 & (2r-1) & 1 \left| 3 \\ 0 & 0 & (2r^2-3r) \left| (-4r-1) \end{pmatrix} [/mm]


a) nun meine erste Frage, ist die Rechnung bis hierhin richtig?
b) 1.Fall habe ich falls es bis hierhin richtig ist, 1.Fall r=0 dann haben wir in der letzen Zeile 000 und auf der rechten -1 stehen und daraus folgt nicht lösbar. wie lauten die Ansätze für die eindeutige Lösung und unendlich viele Lösungen? könnte mir das einer kurz sagen?

        
Bezug
LGS mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 Di 12.03.2013
Autor: reverend

Hallo ellegance,


> Seien [mm]v_1:=(2,1,2)^T v_2:=(1,r,2)^T v_3:=(1,1,r)^T[/mm] und sei
> [mm]A_r[/mm] Element [mm]R^3^x^3[/mm] die Matrix, deren i-te Spalte der
> Vektor [mm]v_i[/mm] ist
>  
> 1) Sei b = (1,2,-1) Element [mm]R^3^x^1.[/mm] Bestimmen Sie
> [mm]Lös(A_r,b)[/mm] (in Abhängigkeit von r)
>  [mm]\begin{pmatrix} 2 & 1 & 1 \left| 1 \\ 1 & r & 1 \left| 2 \\ 2 & 2 & r \left| -1 \end{pmatrix}[/mm]
>  
> dann habe ich  zweite Zeile mal 2 minus die erste und
> dritte Zeile minus die erste.
>  
> [mm]\begin{pmatrix} 2 & 1 & 1 \left| 1 \\ 0 & (2r-1) & 1 \left| 3 \\ 0 & 1 & (r-1) \left| -2 \end{pmatrix}[/mm]
>  
> dann habe ich die dritte Zeile mal (2r-1) - die neue zweite
> Zeile gerechnet.
>  
> [mm]\begin{pmatrix} 2 & 1 & 1 \left| 1 \\ 0 & (2r-1) & 1 \left| 3 \\ 0 & 0 & (2r^2-3r) \left| (-4r-1) \end{pmatrix}[/mm]
>  
>
> a) nun meine erste Frage, ist die Rechnung bis hierhin
> richtig?

Ja, so stimmts.

> b) 1.Fall habe ich falls es bis hierhin richtig ist, 1.Fall
> r=0 dann haben wir in der letzen Zeile 000 und auf der
> rechten -1 stehen und daraus folgt nicht lösbar. wie
> lauten die Ansätze für die eindeutige Lösung und
> unendlich viele Lösungen? könnte mir das einer kurz
> sagen?

Es gibt noch einen zweiten nicht lösbaren Fall für [mm] r=\tfrac{3}{2}. [/mm]

Für unendlich viele Lösungen kommt dann nur noch (aus der zweiten Zeile) $2r-1=0$ in Betracht. Das würde ich mal untersuchen.
Ganz bestimmt sogar, falls Du mal ein Erfolgserlebnis brauchst. ;-)

Für alle anderen r (außer den genannten 3 Werten) ist das System eindeutig lösbar.

Grüße
reverend


Bezug
                
Bezug
LGS mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Di 12.03.2013
Autor: ellegance88

hmm, ich habe jetzt ein wenig rumgegooglet. Da bin ich auf folgende "Fälle" gestoßen.

1.Fall: Rang(A) < Rang (A |b) bei meiner Aufgabe wäre das 0 und 3/2

2.Fall: Eindeutig: Rang (A) = Rang (A|b)=3
bei meiner Aufgabe wären es alle R zahlen außer 0, 3/2 und minus 1/4 richtig?

3.Fall: unendlich viele Lösungen:
Rang(A) = Rang (A|b)<3

da meintest du ja, dass ich die zweite Zeile angucken soll. Könnte ich nicht einfach die letze Zeile angucken und beides gleich 0 setzen.
also bei meinem Beispiel, müsste denn r = 0, r= 3/2 und r= - 1/4 sein, um unendlich viele Lösungen zu haben.

Bezug
                        
Bezug
LGS mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Di 12.03.2013
Autor: ellegance88

Aufgabe
Solang bis jemand die andere offene Frage nicht beantwortet hat, habe ich schon weiter gemacht.
Aufgabenteil b) Bestimmen Sie det [mm] A_r. [/mm] Für welche Parameter r ist die Matrix [mm] A_r [/mm] invertierbar?

Soo da habe ich die Determinante berechnet und bin zum Ergebnis gekommen dass für alle R \ (0, 3/2) die Matrix invertierbar ist,stimmt das?



Bezug
                                
Bezug
LGS mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 15:12 Di 12.03.2013
Autor: fred97


> Solang bis jemand die andere offene Frage nicht beantwortet
> hat, habe ich schon weiter gemacht.
>  Aufgabenteil b) Bestimmen Sie det [mm]A_r.[/mm] Für welche
> Parameter r ist die Matrix [mm]A_r[/mm] invertierbar?
>  Soo da habe ich die Determinante berechnet und bin zum
> Ergebnis gekommen dass für alle R \ (0, 3/2) die Matrix
> invertierbar ist,stimmt das?

Ja, das stimmt. Aber Deine Ausdrucksweise ist katastrophal !

[mm] A_r [/mm] ist invertierbar [mm] \gdw [/mm]  $r [mm] \in \IR \setminus \{ 0, \frac{3}{2} \}$ [/mm]

FRED

>  
>  


Bezug
                                        
Bezug
LGS mit Parameter: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:15 Di 12.03.2013
Autor: ellegance88

komme ab undzu hier mit dem latex nicht klar deswegen, aber naja. Könntest du mir auch kurz helfen wegen der anderen offenen Frage?

bzgl. der drei Fälle für das LGS?

Bezug
                                                
Bezug
LGS mit Parameter: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:24 Fr 15.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
LGS mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 08:31 Mi 13.03.2013
Autor: meili

Hallo,

> hmm, ich habe jetzt ein wenig rumgegooglet. Da bin ich auf
> folgende "Fälle" gestoßen.
>  
> 1.Fall: Rang(A) < Rang (A |b) bei meiner Aufgabe wäre das
> 0 und 3/2

[ok]

>  
> 2.Fall: Eindeutig: Rang (A) = Rang (A|b)=3
>  bei meiner Aufgabe wären es alle R zahlen außer 0, 3/2
> und minus 1/4 richtig?

[notok]
Für $ r [mm] \in \IR \setminus \left\{ 0, \bruch{3}{2} \right\}$ [/mm] stimmt es.
Löse das Gleichungssystem für $r = [mm] -\bruch{1}{4}$. [/mm]

>  
> 3.Fall: unendlich viele Lösungen:
>  Rang(A) = Rang (A|b)<3
>  
> da meintest du ja, dass ich die zweite Zeile angucken soll.

Wenn Du die dritte Zeile mit (2r - 1) multiplizierst,
musst Du sicherstellen, dass Du nicht mit 0 multiplizierst,
weil das keine Äquvivalenzumformung wäre.
Wenn Du allerdings das Gleichungssystem für $r = [mm] \bruch{1}{2}$ [/mm]
löst, zeigt sich für dieses r: Rang(A) = Rang(A|b) = 3.

> Könnte ich nicht einfach die letze Zeile angucken und
> beides gleich 0 setzen.

[ok]

> also bei meinem Beispiel, müsste denn r = 0, r= 3/2 und r=
> - 1/4 sein, um unendlich viele Lösungen zu haben.

[notok]
Für [mm] $r=-\bruch{1}{4}$ [/mm] ist (-4r-1) = 0.
Für $r = 0$ und [mm] $r=\bruch{3}{2}$ [/mm] ist [mm] $(2r^2-3r) [/mm] = 0$.
Damit Rang(A) = Rang(A|b) < 3 ist, müssen für dasselbe r (-4-1)=0 und [mm] $(2r^2-3r) [/mm] = 0$ sein.

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de