www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Lagrange-Multiplikator
Lagrange-Multiplikator < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange-Multiplikator: Beweis
Status: (Frage) beantwortet Status 
Datum: 14:03 So 12.08.2018
Autor: Takota

Hallo,

es geht um diesen Beweis:

Link:
https://www.yumpu.com/de/document/view/12117595/lagrange-multiplikatoren-satz-seien-g-rn-offen-f-c-1gr-g-

Seite 2, ganz unten, wo steht: " ...und die beiden letzten Gleichungen bedeuten:

[mm] $f'(x^0) [/mm] + [mm] \lambda^T g'(x^0) [/mm] = 0$"

Meine Argumentation, warum man aus den beiden Gleichungen auf die Gleichung [mm] $f'(x^0) [/mm] + [mm] \lambda^T g'(x^0) [/mm] = 0$ schließen kann ist folgende:

Da [mm] $x^0 [/mm] = [mm] (u^0,t^0) [/mm] ist und ich das in die Argumente von f und g einsetzte, dann kann man ja nicht mehr nach u oder t partiell ableiten.
Dann bleit als einzige Möglichkeit nur noch, das f und g nach [mm] x^0 [/mm] abgeleitet werden kann.

Gebt mir doch bitte an, wie ihr den Schluß interpretieren würdet?

LG
Takota

        
Bezug
Lagrange-Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 09:59 Di 14.08.2018
Autor: meili

Hallo Takota,

> Hallo,
>  
> es geht um diesen Beweis:
>  
> Link:
>  
> https://www.yumpu.com/de/document/view/12117595/lagrange-multiplikatoren-satz-seien-g-rn-offen-f-c-1gr-g-
>
> Seite 2, ganz unten, wo steht: " ...und die beiden letzten
> Gleichungen bedeuten:
>  
> [mm]f'(x^0) + \lambda^T g'(x^0) = 0[/mm]"
>  
> Meine Argumentation, warum man aus den beiden Gleichungen
> auf die Gleichung [mm]f'(x^0) + \lambda^T g'(x^0) = 0[/mm]
> schließen kann ist folgende:
>  
> Da [mm]$x^0[/mm] = [mm](u^0,t^0)[/mm] ist und ich das in die Argumente von f
> und g einsetzte, dann kann man ja nicht mehr nach u oder t
> partiell ableiten.
>  Dann bleit als einzige Möglichkeit nur noch, das f und g
> nach [mm]x^0[/mm] abgeleitet werden kann.

In die existierenden Ableitungen $f'(x)$ und $g'(x)$ wird [mm] $x^0$ [/mm] eingesetzt.

>  
> Gebt mir doch bitte an, wie ihr den Schluß interpretieren
> würdet?

Die beiden Gleichungen sind Gleichungen für die beiden partiellen
Ableitungen von f und g.
Da f und g stetig differenzierbar sind und die partiellen Ableitungen
stetig sind, kann aus den partiellen Ableitungen
auf die Ableitung von f und g geschlossen werden.

Wenn man die beiden Gleichungen addiert und $ [mm] (u^0, t^0) [/mm] = [mm] x^0$ [/mm] einsetzt, erhält man:

$grad \ [mm] f(x^0) [/mm] + [mm] \summe_{i=1}^{m} \lambda_i [/mm] \ grad \ [mm] g_1(x^0) [/mm] = 0$

was die letzte Zeile des zu beweisenden Satzes ist.

>  
> LG
>  Takota

Gruß
meili

Bezug
                
Bezug
Lagrange-Multiplikator: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 14.08.2018
Autor: Takota

Hallo meili,

ich versuche das noch ein bischen aufzudrösseln was Du geschrieben hast.

(Ohne die Argumente [u^(t), t)], um Schreibaufwand zu sparen :-)):

[mm] $f_u [/mm] + [mm] \lambda^T g_t [/mm] = 0$
[mm] $g_u [/mm] + [mm] \lambda^T g_t [/mm] = 0$

Addition und Umformen ergibt:

[mm] $f_u+f_t [/mm] + [mm] \lambda^T [(g_u [/mm] + [mm] g_t)] [/mm] = 0$

Mit dem Satz:
Da alle partiellen Ableitungen von f und g existieren und stetig sind, ist auch f und g diff'bar.

[mm] $\Rightarrow f'(x^0) [/mm] + [mm] \lambda^T [/mm] g'(x0) = 0$

Was mir noch nicht ganz klar ist:

Die partiellen Ableitung sind [mm] $f_u+f_t$, [/mm] bzw., [mm] $g_u [/mm] + [mm] g_t$. [/mm]

Aber irgendwie fehlt da noch die innere Ableitung u'(t)?
Spielt die bei der Betrachtung hier keine Rolle?

Gruß
Takota


Bezug
                        
Bezug
Lagrange-Multiplikator: Antwort
Status: (Antwort) fertig Status 
Datum: 09:26 Fr 17.08.2018
Autor: meili

Hallo Takota,


>  
> ich versuche das noch ein bischen aufzudrösseln was Du
> geschrieben hast.
>  
> (Ohne die Argumente [u^(t), t)], um Schreibaufwand zu
> sparen :-)):

Es wird nicht mehr $u(t)$ betrachtet (gebraucht, da im Beweis in der
Gleichung (*) $u ' [mm] (t^0)$ [/mm] ersetzt wurde durch $ [mm] -\left( g_u(u^0,t^0) \right) ^{-1}g(u^0, t^0)$ [/mm] ),
sondern $u = [mm] (x_1, \ldots, x_m)$ [/mm] und $t = [mm] (x_{m+1}, \ldots, x_n)$. [/mm]

>  
> [mm]f_u + \lambda^T g_t = 0[/mm]
>  [mm]g_u + \lambda^T g_t = 0[/mm]
>  
> Addition und Umformen ergibt:
>  
> [mm]f_u+f_t + \lambda^T [(g_u + g_t)] = 0[/mm]

[ok]

>  
> Mit dem Satz:
>  Da alle partiellen Ableitungen von f und g existieren und
> stetig sind, ist auch f und g diff'bar.
>  
> [mm]\Rightarrow f'(x^0) + \lambda^T g'(x^0) = 0[/mm]
>  
> Was mir noch nicht ganz klar ist:
>  
> Die partiellen Ableitung sind [mm]f_u+f_t[/mm], bzw., [mm]g_u + g_t[/mm].

Die partiellen Ableitung sind [mm]f_u = \left( \bruch{\partial f}{\partial u_1}, \ldots, \bruch{\partial f}{\partial u_m}, 0, \ldots, 0 \right)[/mm] und  [mm] $f_t [/mm] = [mm] \left(0, \ldots, 0, \bruch{\partial f}{\partial t_{m+1}}, \ldots, \bruch{\partial f}{\partial t_n} \right)$. [/mm]

>  
> Aber irgendwie fehlt da noch die innere Ableitung u'(t)?
> Spielt die bei der Betrachtung hier keine Rolle?

Es wird nicht mehr eine Funktion $u(t)$ betrachtet, sondern nur noch die
Zerlegung von $x$ in $u$ und $t$.

>  
> Gruß
>  Takota
>  

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 5h 45m 2. matux MR Agent
UWTheo/stationär/ergodisch
Status vor 8h 08m 2. fred97
IntTheo/Uneigentliches Integral
Status vor 21h 47m 2. HJKweseleit
UElek/Knotenpotentialverfahren
Status vor 1d 3h 45m 9. matux MR Agent
UStoc/Kombinatorik Beispiele
Status vor 1d 5h 21m 2. Gonozal_IX
UAnaR1FolgReih/Reihen
^ Seitenanfang ^
www.vorhilfe.de