www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineare Gleichungssysteme
Lineare Gleichungssysteme < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Gleichungssysteme: Gleichung durch 4 Punkte
Status: (Frage) beantwortet Status 
Datum: 17:57 So 27.11.2011
Autor: Quarks

Aufgabe
Eine Funktion dritten Grades besitzt bei x1=-5 eine doppelte Nullstelle, bei x2=8 eine einfache Nullstelle und schneidet die y-Achse bei 100. Wie lautet die Funktion

Aufstellung der Gleichung hat funktioniert. Allerdings klappt es mit dem Ausrechnen nicht. Hab jedes Mal, wenn ich die Aufgabe rechne, ein anderes Ergebnis. Meine Gleichungen lauten:
-125a+25b-5c+d=0
512a+64b+8+d=0
75a-10b+c=0
d=100

Mein bestes Ergebniss davon ist:

[mm] a=-\bruch{353}{222} [/mm]

[mm] b=\bruch{28}{37} [/mm]

[mm] c=\bruch{14105}{222} [/mm]

d=100

Da stimmt nur die Nullstelle bei 8 nicht
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 So 27.11.2011
Autor: abakus


> Eine Funktion dritten Grades besitzt bei x1=-5 eine
> doppelte Nullstelle, bei x2=8 eine einfache Nullstelle und
> schneidet die y-Achse bei 100. Wie lautet die Funktion
>  Aufstellung der Gleichung hat funktioniert. Allerdings
> klappt es mit dem Ausrechnen nicht. Hab jedes Mal, wenn ich
> die Aufgabe rechne, ein anderes Ergebnis. Meine Gleichungen
> lauten:
>  -125a+25b-5c+d=0
>  512a+64b+8+d=0
>  75a-10b+c=0
>  d=100
>  
> Mein bestes Ergebniss davon ist:
>  
> [mm]a=-\bruch{353}{222}[/mm]
>
> [mm]b=\bruch{28}{37}[/mm]
>  
> [mm]c=\bruch{14105}{222}[/mm]
>  
> d=100
>  
> Da stimmt nur die Nullstelle bei 8 nicht
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Hallo,
du hast dich verrechnet. Siehe
http://www.wolframalpha.com/input/?i=-125a%2B25b-5c%2Bd%3D0+%2C+512a%2B64b%2B8%2Bd%3D0+%2C+75a-10b%2Bc%3D0%2C+d%3D100

Gruß Abakus


Bezug
                
Bezug
Lineare Gleichungssysteme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 So 27.11.2011
Autor: abakus


>
> > Eine Funktion dritten Grades besitzt bei x1=-5 eine
> > doppelte Nullstelle, bei x2=8 eine einfache Nullstelle und
> > schneidet die y-Achse bei 100. Wie lautet die Funktion
>  >  Aufstellung der Gleichung hat funktioniert. Allerdings
> > klappt es mit dem Ausrechnen nicht. Hab jedes Mal, wenn ich
> > die Aufgabe rechne, ein anderes Ergebnis. Meine Gleichungen
> > lauten:
>  >  -125a+25b-5c+d=0
>  >  512a+64b+8+d=0
>  >  75a-10b+c=0
>  >  d=100
>  >  
> > Mein bestes Ergebniss davon ist:
>  >  
> > [mm]a=-\bruch{353}{222}[/mm]
> >
> > [mm]b=\bruch{28}{37}[/mm]
>  >  
> > [mm]c=\bruch{14105}{222}[/mm]
>  >  
> > d=100
>  >  
> > Da stimmt nur die Nullstelle bei 8 nicht
>  >  Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>  Hallo,
>  du hast dich verrechnet. Siehe
> http://www.wolframalpha.com/input/?i=-125a%2B25b-5c%2Bd%3D0+%2C+512a%2B64b%2B8%2Bd%3D0+%2C+75a-10b%2Bc%3D0%2C+d%3D100
>  
> Gruß Abakus

PS: Ich habe deine zweite Gleichung unverändert zu Wolframalpha kopiert. Da fehlt aber der Buchstabe c (statt 8 muss es 8c heißen).

>  


Bezug
        
Bezug
Lineare Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 So 27.11.2011
Autor: abakus


> Eine Funktion dritten Grades besitzt bei x1=-5 eine
> doppelte Nullstelle, bei x2=8 eine einfache Nullstelle und
> schneidet die y-Achse bei 100. Wie lautet die Funktion
>  Aufstellung der Gleichung hat funktioniert. Allerdings
> klappt es mit dem Ausrechnen nicht. Hab jedes Mal, wenn ich
> die Aufgabe rechne, ein anderes Ergebnis. Meine Gleichungen
> lauten:
>  -125a+25b-5c+d=0
>  512a+64b+8+d=0
>  75a-10b+c=0
>  d=100

Der Ansatz ist auch sehr unglücklich gewählt.
Die Funktion [mm] f(x)=(x+5)^2*(x-8) [/mm] hat die von dir verlangten Nullstellen.
Ein Streckungsfaktor a kann nun alle von 0 verschiedenen Funktionswerte vergrößern oder verkleinern.
Wähle a so, dass
[mm] a*(x+5)^2(x-8) [/mm] an der Stelle 0 den Wert 100 ergibt.
Gruß Abakus

>  
> Mein bestes Ergebniss davon ist:
>  
> [mm]a=-\bruch{353}{222}[/mm]
>
> [mm]b=\bruch{28}{37}[/mm]
>  
> [mm]c=\bruch{14105}{222}[/mm]
>  
> d=100
>  
> Da stimmt nur die Nullstelle bei 8 nicht
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Lineare Gleichungssysteme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:23 So 27.11.2011
Autor: Quarks

hast du dann die Gleichung so gelöst:
[mm] a*(x+5)^2*(x-8)=100 [/mm]

oder auch durch das Gleichungssystem?

Ich verrechne mich einfach jedes Mal...
kann ich in der Prüfung schlecht bringen die Aufgabe x Mal durch zu rechnen...;-)

Bezug
                        
Bezug
Lineare Gleichungssysteme: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 27.11.2011
Autor: Steffi21

Hallo

an der Stelle x=0

[mm] a*(x+5)^{2}*(x-8)=100 [/mm]

[mm] a*(0+5)^{2}*(-8)=100 [/mm]

a*25*(-8)=100

a=...

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de