www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Lineares Ausgleichsproblem
Lineares Ausgleichsproblem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineares Ausgleichsproblem: Lösung mit Singulärwerten
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:00 Mo 11.03.2013
Autor: DirkMueller

Aufgabe
Wie löst man ein lineares Ausgleichsproblem, wenn die Singulärwerte bekannt sind?

Ich weiß nicht, wie man diese Frage beantwortet.

Wenn man die Singulärwertzerlegung durchführt, dann hat man ja nicht nur die Singulärwerte, sondern auch die beiden Matrizen U und V': A = U [mm] \Sigma [/mm] V'.

Wenn man aber die Singulärwerte bereits hat, sind ja die beiden Matrizen U und V' unbekannt!?

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
Lineares Ausgleichsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Mo 11.03.2013
Autor: HJKweseleit

Wenn ich dich recht verstehe, suchst du zu einer Anzahl von Messwertpaaren [mm] (x_i|y_i) [/mm] eine Gleichung der Form [mm] y_i=a*x_i+b, [/mm] die am besten zu den Paaren passt (Ausgleichsgerade). Diese wählt man üblicher Weise so, dass die Summe der Fehlerquadrate minimiert wird: a und b sind dann "optimal", wenn die Summe der Fehlerquadrate
[mm] \summe_{i=1}^{n}(y_i-a*x_i+b)^2 [/mm] minimal wird.
Gäbe es für a und b eine gemeinsame Lösung, die alle Gleichungen erfüllte, müsste diese das LGS [mm] y_i=a*x_i+b [/mm] lösen, in Matrizenschreibweise:
[mm] \pmat{ x_1 & 1 \\ x_2 & 1 \\... & ... \\x_n & 1 \\}*\vektor{a \\ b}=\vektor{y_1 \\y_2 \\... \\ y_n} [/mm]
Da aber die Messwerte nicht alle ideal auf einer Geraden liegen, ist i.a. das LGS unlösbar.

Für eine solche Matrizengleichung [mm] A*\vektor{a \\ b}=y [/mm] gilt:
Eine "beste Annäherung" (Ausgleichsgerade), bei der die Summe der Fehlerquadrate minimiert wird, erhält man, indem man obige Matrizengleichung auf beiden Seiten mit der Transponierten Matrix [mm] A^T [/mm] Multipliziert und es dann löst.

Bilde also [mm] (A^T*A)*\vektor{a \\ b}=A^T*y. [/mm] Du erhältst nur noch 2 Gleichungen mit 2 Unbekannten a und b und daraus eine eindeutige Lösung.

Bezug
                
Bezug
Lineares Ausgleichsproblem: Lösen mit Singulärwerten
Status: (Frage) überfällig Status 
Datum: 20:31 Mo 11.03.2013
Autor: DirkMueller

@HJKweseleit

Ich danke dir für die Mühe und den Versuch die Frage zu beantworten!

Du erklärst, was ein lineares Ausgleichsproblem ist - Danke, das habe ich aber nicht gefragt.
Du schlägst vor, das lineare Ausgleichsproblem mit Hilfe von Normalengleichungen zu lösen - das habe ich nicht gefragt (außerdem ist dieses Verfahren die schlechteste Wahl wegen der numerischen Instabilität).

Meine Frage ist wörtlich so zu verstehen, wie ich sie gestellt habe. :-)

Bezug
                        
Bezug
Lineares Ausgleichsproblem: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:21 Mi 13.03.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Lineares Ausgleichsproblem: Nachfrage für Unbedarfte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Mi 13.03.2013
Autor: meili

Hallo,

was nützen bzw. wozu braucht man die Matrizen U und V'
beim Lösen eines linearen Ausgleichsproblem?

Gruß
meili

Bezug
                
Bezug
Lineares Ausgleichsproblem: Lösung mit der Singulärwerten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Mi 13.03.2013
Autor: DirkMueller

@meili

Stichwort Pseudoinverse bzw. Pseudonormallösung...

Es scheint allein mit Singulärwerten ohne die Matrizen U und V nicht zu gehen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de