www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Modifiziertes Euler-Verfahren
Modifiziertes Euler-Verfahren < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modifiziertes Euler-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:48 Sa 07.02.2015
Autor: Trikolon

Aufgabe
Gegeben sei das AWP y'=-2ax, [mm] y(0)=y_0. [/mm]
Bestimme den Diskretisierungsfehler für das modifizierte Euler-Verfahren

Hallo,

mein Problem liegt darin, dass ich nicht weiß, wie ich das Verfahren
[mm] y_{k+1}=y_k+hf(x_k+h/2,y_k+h/2f(x_k,y_k)) [/mm]
auf das AWP anwenden soll...

Also [mm] y_1=y_0+hf(x_0+h/2,y_0+h/2f(x_0,y_0)), [/mm] wobei [mm] x_0=0 [/mm]
Also [mm] y_1=y_0+hf(h/2,y_0+h/2f(y_0)) [/mm]

Und jetzt??

Wäre wirklich froh, wenn ihr mir auf die Sprünge helfen könntet...

        
Bezug
Modifiziertes Euler-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:51 Sa 07.02.2015
Autor: chrisno


> Gegeben sei das AWP y'=-2ax, [mm]y(0)=y_0.[/mm]

Wie lautet f(x,y)? (Erforderliche Arbeit: praktisch keine.)

Bezug
                
Bezug
Modifiziertes Euler-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:01 Sa 07.02.2015
Autor: Trikolon

f (x, y)=-2ax

Aber wie kann ich das in das Verfahren einsetzen?

Bezug
                        
Bezug
Modifiziertes Euler-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:43 So 08.02.2015
Autor: meili

Hallo,

> f (x, y)=-2ax
>  
> Aber wie kann ich das in das Verfahren einsetzen?  

Das Problem, das keines ist, ist dass in diesem Fall das f nicht von y
abhängt.
Setze also konsequent an den Stellen, an denen f(...,...) auftaucht [mm] $-2a\tilde{x}$, [/mm]
mit [mm] $\tilde{x}=x_k+\bruch{h}{2}$, [/mm] evntl. [mm] $x_k [/mm] = kh$,
und der Teil [mm] $y_k+\bruch{h}{2}f(x_k,y_k)$ [/mm] in [mm] $y_{k+1} [/mm] =  [mm] y_k [/mm] + [mm] hf\left(x_k+\bruch{h}{2},y_k+\bruch{h}{2}f(x_k,y_k)\right)$ [/mm] fällt weg,
da f nicht von y abhängt.

Gruß
meili


Bezug
                                
Bezug
Modifiziertes Euler-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 So 08.02.2015
Autor: Trikolon

Also ist dann [mm] x_{k+1}=y_k+h (-2a(x_k+h/2)? [/mm]

Bezug
                                        
Bezug
Modifiziertes Euler-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:35 So 08.02.2015
Autor: MathePower

Hallo Trikolon,



> Also ist dann [mm]x_{k+1}=y_k+h (-2a(x_k+h/2)?[/mm]  


Fast, bis auf den kleinen Schreibfehler:


[mm]\blue{y}_{k+1}=y_k+h (-2a(x_k+h/2)[/mm]


Gruss
MathePower


Bezug
                                                
Bezug
Modifiziertes Euler-Verfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 So 08.02.2015
Autor: Trikolon

Ok, dann erhalte ich für den Fehler:

[mm] y(x_k)-y_k=2ah^2k-kh. [/mm]

Stimmt das?

Bezug
                                                        
Bezug
Modifiziertes Euler-Verfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:29 So 08.02.2015
Autor: MathePower

Hallo Trikolon,

> Ok, dann erhalte ich für den Fehler:
>  
> [mm]y(x_k)-y_k=2ah^2k-kh.[/mm]
>  


Um das überprüfen zu können,
ist das posten der Rechenschritte notwendig.


> Stimmt das?


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de