www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Nullstellen Polynomfunktion
Nullstellen Polynomfunktion < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellen Polynomfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:41 Di 06.01.2009
Autor: kilchi

Aufgabe
Wie komme ich von der Funktion

f(x) = 0.25 [mm] x^7 [/mm] - 5 [mm] x^6 [/mm] + 41,25 [mm] x^5 [/mm] - 181,5 [mm] x^4 [/mm] + 459 [mm] x^3 [/mm] - 666 [mm] x^2 [/mm] + 512 x - 160

auf diese Lösung

0.25 [mm] (x-1)(x-2)^3(x-4)^2(x-5) [/mm]

Wir sind beim Thema Polynomfunktion/Nullstellen.


Dazu eine Frage:

Wie komme ich von der einen Funktion zur anderen?

Diese Aufgabe sollte wohl mit dem folgenden Satz gelöst werden (?):

Hat eine Polynomfunktion f vom Grad [mm] \ge [/mm] 1 eine Nullstelle [mm] x_{0} \in \IR, [/mm] dann gilt f(x) = [mm] x_{0} [/mm] = (x - [mm] x_{0}) [/mm] * g(x) wobei g(x) ein Polynom vom Grad n - 1 ist.

Aber wie würde ich eine Funktion g(x) finden? Also, eigentlich habe ich überhaupt keinen Plan, wie man das lösen sollte!! Deshalb, bin ich für jede Hilfe dankbar! Jetzt schon besten Dank für eure Bemühungen.


        
Bezug
Nullstellen Polynomfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:44 Di 06.01.2009
Autor: Martinius

Hallo,

schau einmal da:

[]http://www.mathematik.de/ger/fragenantworten/erstehilfe/nullstellenpolynome/nullstellenpolynomerational.html


LG, Martinius

Bezug
        
Bezug
Nullstellen Polynomfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:01 Di 06.01.2009
Autor: Steffi21

Hallo, die Funktion sieht nur ganz grausam aus, was die Bestimmung der Nullstellen betrifft, du benötigst hier nicht mal ein Näherungsverfahren, zu Schulzeiten haben wir die Nullstellen geraten, [mm] \pm1, \pm2, \pm3..., [/mm] dann Polynomdivision gemacht, hast du alle Nullstellen, sollte die angegebene Lösung kein Problem sein, als ganz einfaches Beispiel: [mm] x^{2}+2x-3=(x-1)*(x+3), [/mm] du kannst ja auch mal ein Blick auf die Lösung riskieren, Steffi

Bezug
                
Bezug
Nullstellen Polynomfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:29 Mi 07.01.2009
Autor: kilchi

Es geht also auch einfach! ;-)
Besten Dank für eure Antworten.

Bezug
                        
Bezug
Nullstellen Polynomfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:50 Do 08.01.2009
Autor: Schachschorsch56

Die NST bekommst Du auch, wenn Du ganzzahlige Teiler des variablenfreien Wertes ausprobierst. Du fängst mit den Teilern an, die der Null am nächsten sind und gehst dann weiter.

Schorsch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de