www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Nutzengewinn - Maximum
Nutzengewinn - Maximum < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nutzengewinn - Maximum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:23 Mi 08.06.2022
Autor: MrGruuu

Aufgabe
Value of interest VI(p) in Abhängigkeit der Eintritt-WSK p einer Krankheit gegeben.


Für 0<p<p* VI(p) = g*p
Für p*<= p >=1 VI(p) = (1-p)*l

Der Punkt p* definiert die "Behandlungsschwelle" im ersten INtervall wird behandelt im zweiten nicht

Nun ist der Maximalpunkt gefragt, der zwei Funktionen im Punk p*

Hallo erstmal

Mein Professor hat als Maximum g*l/(g+l) definiert

Wenn ich jedoch die Berechnung durchführe
Maximum im Punkt p* und dies in beide Gleichungen Einsetze, um die y-Koordinate zu berechnen erhalte ich folgendes

g*p*=(1-p*)*l
p*= l/(g+l)

Meine Frage ist nun, mache ich den Fehler oder von wo kommt das "g" im Zähler des Bruchs bei meinem Professor?

Danke und Gruss
Anel

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Nutzengewinn - Maximum: Unklarheiten
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:49 Mi 08.06.2022
Autor: Al-Chwarizmi

Mir fällt es schwer, die "Aufgabe" zu verstehen.

(1.)  Was soll das g bedeuten ? Ist das eine vorgegebene Konstante ?
(2.)  Was soll das "l" jeweils bedeuten ?  Ist das die Zahl Eins oder eine Variable, bezeichnet durch den Buchstaben "l" ?  Und was soll die Bedeutung davon sein ?

Bezug
        
Bezug
Nutzengewinn - Maximum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 Mi 08.06.2022
Autor: meili

Hallo MrGruuu,

[willkommenmr]

> Value of interest VI(p) in Abhängigkeit der Eintritt-WSK p
> einer Krankheit gegeben.
>
>
> Für 0<p<p* VI(p) = g*p
> Für p*<= p >=1 VI(p) = (1-p)*l

Müsste das nicht " Für $ [mm] p\*\le [/mm] p [mm] \le 1\quad [/mm]  VI(p) = (1-p)*l$ " sein?

>  
> Der Punkt p* definiert die "Behandlungsschwelle" im ersten
> INtervall wird behandelt im zweiten nicht
>  
> Nun ist der Maximalpunkt gefragt, der zwei Funktionen im
> Punk p*
>  Hallo erstmal
>  
> Mein Professor hat als Maximum g*l/(g+l) definiert
>  
> Wenn ich jedoch die Berechnung durchführe
>  Maximum im Punkt p* und dies in beide Gleichungen
> Einsetze, um die y-Koordinate zu berechnen erhalte ich
> folgendes
>  
> g*p*=(1-p*)*l
>  p*= l/(g+l)

Damit berechnest du p* (die x-Koordinate des Punktes in dem das Maximum liegt).
Will man nun die y-Koordinate des Maximums berechnen, setzt man dieses p*
in die obige Funktion ein.
Im Maximum müssen beide Teildefinitionen den gleichen Wert haben.
Es wurde der erste Teil g*p genommen: [mm] $g*p\* [/mm] = [mm] \bruch{g*l}{g+l}$. [/mm]

Nachtrag:
Auch wenn man  $ [mm] p\*$ [/mm] in  $VI(p) = (1-p)*l$ einsetzt, muss es dasselbe ergeben.

$  [mm] (1-p\*)*l [/mm] = [mm] \left(1-\bruch{l}{g+l}\right)*l [/mm] = [mm] \left(\bruch{g+l-l}{g+l}\right)*l [/mm] = [mm] \bruch{g*l}{g+l} [/mm] $

>  
> Meine Frage ist nun, mache ich den Fehler oder von wo kommt
> das "g" im Zähler des Bruchs bei meinem Professor?
>  
> Danke und Gruss
>  Anel
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt

Gruß
meili


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de