www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Partielle Ableitung (W/C)^0,5
Partielle Ableitung (W/C)^0,5 < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Partielle Ableitung (W/C)^0,5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 So 10.03.2013
Autor: Atra

Aufgabe
[mm] U=\wurzel{\bruch{w}{c}} [/mm]

Hallo ihr Lieben,

dies ist mein erster Post, und ich hoffe er liegt nicht direkt komplett im falschen Forumabteil.



Die oben genannte funktion ist eine Nutzenfunktion, welche ich für Lagrange Partiell Ableiten muss, und ich steh Total aufm schlauch.


meine Verständniss ist eigentlich folgendes.

sqrt(w/c) = sqrt(w)/sqrt(c)

dU/dw = (w^(-0,5)) / sqrt(c)

dU/dc = sqrt(w) / (c^(-0,5))

nur zeigt mir Wolfrahm Mathematics diese ableitung nicht an und ich bin total verunsichert ...

Vorweg, mir ist bewusst, dass c^-0,5 = 1/(2sqrt(c)) ist,
an der stelle herrscht kein verwechslungsfehler.

Lerne für ne vwl Prüfung, is ja alles schön und macht sinn, aber an dieser übungsaufgabe haperts echt an der partiellen Ableitung -.-

vielen Dank für jegliche Hilfe Vorweg.

lg
Atra

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Partielle Ableitung (W/C)^0,5: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 So 10.03.2013
Autor: MathePower

Hallo Atra,


[willkommenmr]


> [mm]U=\wurzel{\bruch{w}{c}}[/mm]
>  Hallo ihr Lieben,
>
> dies ist mein erster Post, und ich hoffe er liegt nicht
> direkt komplett im falschen Forumabteil.
>  


Nein, das tut er nicht.


>
>
> Die oben genannte funktion ist eine Nutzenfunktion, welche
> ich für Lagrange Partiell Ableiten muss, und ich steh
> Total aufm schlauch.
>  
>
> meine Verständniss ist eigentlich folgendes.
>  
> sqrt(w/c) = sqrt(w)/sqrt(c)
>  
> dU/dw = (w^(-0,5)) / sqrt(c)

>


Hier hast Du die Potenzregel nicht richtig angewendet.


> dU/dc = sqrt(w) / (c^(-0,5))
>  

Es ist doch:

[mm]U=\wurzel{\bruch{w}{c}}=\bruch{\wurzel{w}}{\wurzel{c}}=\bruch{w^{\bruch{1}{2}}}{c^{\bruch{1}{2}}}[/mm]

Für die Ableitung nach c ist die Quotientenregel
in Verbindung mit der Potenzregel anzuwenden.


> nur zeigt mir Wolfrahm Mathematics diese ableitung nicht an
> und ich bin total verunsichert ...
>  
> Vorweg, mir ist bewusst, dass c^-0,5 = 1/(2sqrt(c)) ist,
> an der stelle herrscht kein verwechslungsfehler.
>
> Lerne für ne vwl Prüfung, is ja alles schön und macht
> sinn, aber an dieser übungsaufgabe haperts echt an der
> partiellen Ableitung -.-
>  
> vielen Dank für jegliche Hilfe Vorweg.
>  
> lg
>  Atra
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt. #


Gruss
MathePower

Bezug
                
Bezug
Partielle Ableitung (W/C)^0,5: Potenzregel reicht aus
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:18 So 10.03.2013
Autor: notinX

Hallo,

> Hallo Atra,
>  
>
> [willkommenmr]
>  
>
> > [mm]U=\wurzel{\bruch{w}{c}}[/mm]
>  >  Hallo ihr Lieben,
> >
> > dies ist mein erster Post, und ich hoffe er liegt nicht
> > direkt komplett im falschen Forumabteil.
>  >  
>
>
> Nein, das tut er nicht.
>  
>
> >
> >
> > Die oben genannte funktion ist eine Nutzenfunktion, welche
> > ich für Lagrange Partiell Ableiten muss, und ich steh
> > Total aufm schlauch.
>  >  
> >
> > meine Verständniss ist eigentlich folgendes.
>  >  
> > sqrt(w/c) = sqrt(w)/sqrt(c)
>  >  
> > dU/dw = (w^(-0,5)) / sqrt(c)
>  >
>  
>
> Hier hast Du die
> Potenzregel
> nicht richtig angewendet.
>  
>
> > dU/dc = sqrt(w) / (c^(-0,5))
>  >  
>
> Es ist doch:
>  
> [mm]U=\wurzel{\bruch{w}{c}}=\bruch{\wurzel{w}}{\wurzel{c}}=\bruch{w^{\bruch{1}{2}}}{c^{\bruch{1}{2}}}[/mm]
>  
> Für die Ableitung nach c ist die
> Quotientenregel
>   in Verbindung mit der
> Potenzregel
> anzuwenden.

das führt zwar auch zum richtigen Ergebnis, wäre aber doch 'mit Kanonen auf Spatzen geschossen' :-)
Wenn man den Term umschreibt, reicht die Potenzregel aus:
$ [mm] U=\wurzel{\bruch{w}{c}}=\bruch{\wurzel{w}}{\wurzel{c}}=\bruch{w^{\bruch{1}{2}}}{c^{\bruch{1}{2}}} =w^{\frac{1}{2}}c^{-\frac{1}{2}}$ [/mm]

>  
>
> > nur zeigt mir Wolfrahm Mathematics diese ableitung nicht an
> > und ich bin total verunsichert ...
>  >  
> > Vorweg, mir ist bewusst, dass c^-0,5 = 1/(2sqrt(c)) ist,
> > an der stelle herrscht kein verwechslungsfehler.
> >
> > Lerne für ne vwl Prüfung, is ja alles schön und macht
> > sinn, aber an dieser übungsaufgabe haperts echt an der
> > partiellen Ableitung -.-
>  >  
> > vielen Dank für jegliche Hilfe Vorweg.
>  >  
> > lg
>  >  Atra
>  >  
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt. #
>  
>
> Gruss
>  MathePower

Gruß,

notinX

Bezug
                        
Bezug
Partielle Ableitung (W/C)^0,5: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 So 10.03.2013
Autor: Atra

also,

ich steh immernoch aufm schlauch...

heißt das dann

ich leite c^(-(w^(0.5)/2)) ab ?

dU/dc = (-(w^(0.5)/2))c^(-(w^(0.5)/2)-1)




ohh lololol

ich hab deine umformung ueberlesen.

top, wie einfach es sein kann

also dU/dc = (-1/2)(w^(1/2))(c^(-3/2))

hoffe das stimmt ^^

??

Bezug
                                
Bezug
Partielle Ableitung (W/C)^0,5: Antwort
Status: (Antwort) fertig Status 
Datum: 21:15 So 10.03.2013
Autor: steppenhahn

Hallo,


> ohh lololol
>  
> ich hab deine umformung ueberlesen.
>  
> top, wie einfach es sein kann
>  
> also dU/dc = (-1/2)(w^(1/2))(c^(-3/2))
>  
> hoffe das stimmt ^^
>  
> ??

Ja, das ist richtig.

Viele Grüße,
Stefan

Bezug
                                        
Bezug
Partielle Ableitung (W/C)^0,5: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 So 10.03.2013
Autor: Atra




vielen Dank für die hilfe !!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de