www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Polynomdivision
Polynomdivision < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Do 13.01.2011
Autor: Domee

Aufgabe
Berechnen Sie die Schnittpunkte mit der x und y Achse
[mm] x^3-2x^2-x+2 [/mm]

Hallo ihr Lieben,

bin jetzt wie folgt vorgegangen und würde mich freuen, wenn jemand mal einen Blick über meine Rechnung werfen kann.

Für den y-Wert setze ich die 0 in die Ausgangsfunktion und erhalte 2.

Für den x-Wert wende ich die Polynomdivision wie folgt an:

[mm] x^3-2x^2-x+2: [/mm] (x-2) = [mm] x^2-1 [/mm]
[mm] -(x^3-2x^2) [/mm]
___________
0   0   -x+2
        -(-x+2)
____________
           0     0

Dann wende ich die P-Q-Formel wie folt an.

[mm] x^2-1 [/mm] = 0
x2,3= 0 +- 1
x2 = 1
x3= -1

Die Schnittpunkte mit der x Achse lauten:

x1 (2/0)
x2 (1/0)
x3 (-1/0)

        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Do 13.01.2011
Autor: Steffi21

Hallo, alle Ergebnisse korrek, was du mit "x2,3= 0 +- 1" ist nicht nachvollziehbar, Steffi

Bezug
                
Bezug
Polynomdivision: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Do 13.01.2011
Autor: Domee

Das soll die P-Q-Formel sein.
Habe das Ergebnis für die Wurzel schon ausgerechnet gehabt.

Gruß

Domee

Bezug
                        
Bezug
Polynomdivision: Antwort
Status: (Antwort) fertig Status 
Datum: 14:47 Do 13.01.2011
Autor: reverend

Hallo domee,

das ist nicht schick notiert, aber ansonsten richtig.

Hübscher: [mm] x_{2/3}=0\pm{1} [/mm]

Grüße
reverend


Bezug
        
Bezug
Polynomdivision: Anmerkung
Status: (Antwort) fertig Status 
Datum: 15:07 Do 13.01.2011
Autor: Roadrunner

Hallo Domee!


> Dann wende ich die P-Q-Formel wie folt an.
>  
> [mm]x^2-1[/mm] = 0

Das sollte ohne p/q-Formel aber schneller (und weniger fehleranfällig) gehen:

[mm]0 \ = \ x^2-1 \ = \ (x+1)*(x-1)[/mm]

[mm]\Rightarrow \ \ x+1 \ = \ 0 \ \ \ \text{ oder } \ \ \ x-1 \ = \ 0[/mm]


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de