www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Quadratische Funktionen aufg.2
Quadratische Funktionen aufg.2 < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Quadratische Funktionen aufg.2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Do 27.09.2012
Autor: Spike156

Aufgabe
Aufgabe 3
Ein Gegenstand wird aus 30m Höhe über der Erdoberfläche mit der Anfangsgeschwindigkeit v0=2,5 m/s senkrecht nach oben geworfen.

3.1 Stellen sie eine Funktionsgleichung auf, die die Höhe des Gegenstandes in Abhängigkeit von der Zeit beschreibt.

/Physikalische Grundlagen: Der Weg einer gleichförmigen Bewegung ist s=v0*t. Der Weg einer beschleunigten Bewegung (und das ist der freie Fall) ist s=g/2 * t² mit g=10m/s²

3.2 Zu welchem Zeitpunkt ist die Maximale Höhe erreicht?

3.3 Berechnen Sie den zeitpunkt, wann die ursprüngliche Höhe wieder erreicht wird.



Moin,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
dass hier sind meine letzten Aufgaben die ich zu morgen alle haben muss *hust* wenn ich bei Aufgabe 3 Anfange kann ich anhand des textes doch für die steigung -2,5 herauslesen und der y-Achsenabschnitt wäre dann +30 oder?

d.h. für 3.1 würde sich eine Funktionsgleichung von f(x)=-2,5x+30 ergeben ist das richtig ?

zu 3.2

Die Geschwindigkeit im höchsten Punkt ist v = 0
Die Geschwindigkeit am Anfang der Bewegung ist vo = 2,5 m/s
Die Geschwindigkeit zu einem beliebigen Zeitpunkt ist v = vo - g t
Daraus ergibt sich t = ( vo - v ) / g = [ ( 2,5 - 0 ) / 10] s = 0,25 s.

ist da was dran ? ^^

        
Bezug
Quadratische Funktionen aufg.2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Do 27.09.2012
Autor: angela.h.b.

Hallo Spike156,

bitte poste in Zukunft nicht mehr mehrere Aufgaben in einem einzigen Thread.

Ich habe die anderen Aufgaben auf eigene Threads verteilt.
Liefere dort bitte noch Lösungsansätze.

LG Angela


Bezug
        
Bezug
Quadratische Funktionen aufg.2: Antwort
Status: (Antwort) fertig Status 
Datum: 21:43 Do 27.09.2012
Autor: Steffi21

Hallo,

> zu 3.2
>  
> Die Geschwindigkeit im höchsten Punkt ist v = 0
>  Die Geschwindigkeit am Anfang der Bewegung ist vo = 2,5
> m/s
>  Die Geschwindigkeit zu einem beliebigen Zeitpunkt ist v =
> vo - g t
>  Daraus ergibt sich t = ( vo - v ) / g = [ ( 2,5 - 0 ) /
> 10] s = 0,25 s.
>  

alles ok
Steffi


Bezug
                
Bezug
Quadratische Funktionen aufg.2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Do 27.09.2012
Autor: Spike156

heißt das dann das der höchste punkt nach 0,25 sekunden erreicht wurde ? das kann ja nicht sein oder ? und wo spielt das eine rolle ob er das 30meter über der erdoberfläche nach oben wirft weißt du das ?

Bezug
                        
Bezug
Quadratische Funktionen aufg.2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Do 27.09.2012
Autor: Richie1401


> heißt das dann das der höchste punkt nach 0,25 sekunden
> erreicht wurde ? das kann ja nicht sein oder ? und wo
> spielt das eine rolle ob er das 30meter über der
> erdoberfläche nach oben wirft weißt du das ?

Warum sollte die Zeit denn nicht stimmen?

Bei der Geschwindigkeit spielt das keine Rolle. Zumindest nicht in diesem betrachteten Beispiel/Aufgabe.
Die 30m ist ja eine Höhenangabe und spielt daher nur bei der Wegberechnung (bzw. aktuellen Höhe) eine Rolle.

Bezug
        
Bezug
Quadratische Funktionen aufg.2: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Do 27.09.2012
Autor: Richie1401

Hallo,

> Aufgabe 3
>  Ein Gegenstand wird aus 30m Höhe über der Erdoberfläche
> mit der Anfangsgeschwindigkeit v0=2,5 m/s senkrecht nach
> oben geworfen.
>  
> 3.1 Stellen sie eine Funktionsgleichung auf, die die Höhe
> des Gegenstandes in Abhängigkeit von der Zeit beschreibt.
>  
> /Physikalische Grundlagen: Der Weg einer gleichförmigen
> Bewegung ist s=v0*t. Der Weg einer beschleunigten Bewegung
> (und das ist der freie Fall) ist s=g/2 * t² mit g=10m/s²
>  
> 3.2 Zu welchem Zeitpunkt ist die Maximale Höhe erreicht?
>  
> 3.3 Berechnen Sie den zeitpunkt, wann die ursprüngliche
> Höhe wieder erreicht wird.
>  
>
> Moin,
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  dass hier sind meine letzten Aufgaben die ich zu morgen
> alle haben muss *hust* wenn ich bei Aufgabe 3 Anfange kann
> ich anhand des textes doch für die steigung -2,5
> herauslesen und der y-Achsenabschnitt wäre dann +30 oder?
>
> d.h. für 3.1 würde sich eine Funktionsgleichung von
> f(x)=-2,5x+30 ergeben ist das richtig ?

Das ist nicht richtig!
h(t)=30m+s(t)
Wie genau nun s(t) aussieht ist dein Job.

>  
> zu 3.2
>  
> Die Geschwindigkeit im höchsten Punkt ist v = 0
>  Die Geschwindigkeit am Anfang der Bewegung ist vo = 2,5
> m/s
>  Die Geschwindigkeit zu einem beliebigen Zeitpunkt ist v =
> vo - g t
>  Daraus ergibt sich t = ( vo - v ) / g = [ ( 2,5 - 0 ) /
> 10] s = 0,25 s.
>  
> ist da was dran ? ^^


Bezug
                
Bezug
Quadratische Funktionen aufg.2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Do 27.09.2012
Autor: Spike156

Neuer lösungsansatz zu aufgabe 3.1

s=v0*x−g/2 ⋅x²+30 ist das richtig ?

Bezug
                        
Bezug
Quadratische Funktionen aufg.2: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Do 27.09.2012
Autor: Richie1401


> Neuer lösungsansatz zu aufgabe 3.1
>  
> s=v0*x−g/2 ⋅x²+30 ist das richtig ?

Das sieht besser aus.

[mm] h(t)=-g/2*t^2+v_0t+30m [/mm]

Nur noch [mm] v_0 [/mm] einsetzen und schon hast du die Höhenfunktion.

Bezug
                                
Bezug
Quadratische Funktionen aufg.2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Do 27.09.2012
Autor: Spike156

also:

3.1 ist die lösung

$ [mm] h(t)=-g/2\cdot{}t^2+2,5t+30m [/mm] $

3.2
nach 0,25 sekunden

3.3
da setze ich jetzt s in die funktionsgleichung ein und das wars ?

Bezug
                                        
Bezug
Quadratische Funktionen aufg.2: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Do 27.09.2012
Autor: Richie1401


> also:
>  
> 3.1 ist die lösung
>
> [mm]h(t)=-g/2\cdot{}t^2+2,5t+30m[/mm]

g könntest du auch noch einsetzen. Aber als Konstante ist es auch ok.

>  
> 3.2
>  nach 0,25 sekunden
>  
> 3.3
> da setze ich jetzt s in die funktionsgleichung ein und das
> wars ?

Entweder du setzt s(t)=30m und löst dann nach t auf, oder du benutzt deinen gesunden Menschenverstand. Wenn du das Teil hochwirfst, ist es nach 0,25s am höchsten Punkt. Wie lange wird es also dauern, bis es am Ausgangspunkt wieder angekommen ist? Na offensichtlich auch 0,25s.
gesamte Zeit vom Abwurf bis zur "Wiederankunft" an derselben Stelle: t=0,25s+0,25s=0,5s


Bezug
                                                
Bezug
Quadratische Funktionen aufg.2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:27 Do 27.09.2012
Autor: Spike156

das klingt plausiebel... danke :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de