www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Reelle Lösungen & Ungleichunge
Reelle Lösungen & Ungleichunge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Reelle Lösungen & Ungleichunge: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:32 Sa 19.04.2014
Autor: pc_doctor

Aufgabe
Finde reelle Lsg für | x+1 | - | x-1 | = 1

Hallo,

ich bräuchte bitte mal einen Tipp für die Aufgabe. Ich muss ja nach x "auflösen". Doch die Betragsstriche stören mich , muss ich eine Fallunterscheidung machen bezüglich des Betrags ?


Vielen Dank im Voraus

        
Bezug
Reelle Lösungen & Ungleichunge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Sa 19.04.2014
Autor: Sax

Hi,

eine Fallunterscheidung ist eine Idee, die auf jeden Fall zur Lösung führt.
(Bis ich durch langes Nachdenken eine elegantere Methode für dieses spezielle Beispiel gefunden habe, bin ich mit der Fallunterscheidung schon fertig.)

Gruß Sax.

Bezug
                
Bezug
Reelle Lösungen & Ungleichunge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:56 Sa 19.04.2014
Autor: pc_doctor

Hallo, danke für die Antwort.

Ich muss also eine Fallunterscheidung für

x [mm] \ge [/mm] 1

x < -1 ( echt kleiner ? )

machen.

Sobald ich etwas für x [mm] \ge [/mm] 1 einsetze, sind beide Beträge positiv.
Sobald ich etwas für x < -1 einsetze ,werden beide Beträge negativ.

Im zweiten Fall muss es ja x < -1 sein , oder , also echt kleiner als -1. Denn bei -1 wäre der erste Betrag 0 , also positiv , das wird aber durch den ersten Fall abgedeckt.

Weitere Frage:
Wann werden die Betraggsstriche weggelassen ? Wenn das was im Betrag kleiner ODER kleiner gleich 0 ist ?

Bezug
                        
Bezug
Reelle Lösungen & Ungleichunge: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Sa 19.04.2014
Autor: Steffi21

Hallo, also mit Fallunterscheidungen:

Fall 1.: [mm] x+1\ge0 [/mm] daraus folgt [mm] x\ge-1 [/mm]

Fall 1.1.: [mm] x-1\ge0 [/mm] daraus folgt [mm] x\ge1 [/mm]

zu lösen ist jetzt die Gleichung

x+1-(x-1)=1

2=1

Fall 1.2.: x-1<0 daraus folgt x<1

zu lösen ist jetzt die Gleichung

x+1+(x-1)=1

2x=1

x=0,5

x=0,5 erfüllt die Bedingung [mm] x\ge-1 [/mm] und x<1, gehört also zur Lösungsmenge

Fall 2.: x+1<0

Fall 2.1.: [mm] x-1\ge0 [/mm]

Fall 2.2.: x-1<0

Steffi

Bezug
                                
Bezug
Reelle Lösungen & Ungleichunge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Sa 19.04.2014
Autor: pc_doctor

Hallo, danke für die Lösung , aber ich würde gerne wissen, ob meine Überlegung falsch war , oder nicht.(Das soll nicht negativ klingen, bin dankbar für deine Lösung , aber so lerne ich leider nix )

Ich kopiere es noch mal rein, da mir die Antworten wichtig sind und ich am Weg interessiert bin.

Ich muss also eine Fallunterscheidung für

x $ [mm] \ge [/mm] $ 1

x < -1 ( echt kleiner ? )

machen.

Sobald ich etwas für x $ [mm] \ge [/mm] $ 1 einsetze, sind beide Beträge positiv.
Sobald ich etwas für x < -1 einsetze ,werden beide Beträge negativ.

Im zweiten Fall muss es ja x < -1 sein , oder , also echt kleiner als -1. Denn bei -1 wäre der erste Betrag 0 , also positiv , das wird aber durch den ersten Fall abgedeckt.

Weitere Frage:
Wann werden die Betraggsstriche weggelassen ? Wenn das was im Betrag kleiner ODER kleiner gleich 0 ist ?



Bezug
                                        
Bezug
Reelle Lösungen & Ungleichunge: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Sa 19.04.2014
Autor: Steffi21

Hallo, ich hbae das Gefühl, du möchtest mit nur zwei Fällen die Gleichung lösen:

für [mm] x+1\ge0 [/mm] kannst du die Betragstriche bei |x+1| weglassen, für x+1<0 ergibt sich für |x+1| der Term -(x+1)

beachte die Betragsdefinition

|x| = [mm] \begin{cases} \ \;\,\ \ x &\mathrm{f\ddot ur}\ x \ge 0\\ \ \;\, - x &\mathrm{f\ddot ur}\ x < 0 \end{cases} [/mm]

für den den Fall [mm] x+1\ge0 [/mm] hast du aber noch zu untersuchen [mm] x-1\ge0 [/mm] und x-1<0

somit hast du also vier Fälle

Steffi



Bezug
                                                
Bezug
Reelle Lösungen & Ungleichunge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:57 Sa 19.04.2014
Autor: pc_doctor

Alles klar, jetzt verstehe ich meinen Fehler.

Vielen Dank.

Bezug
                                                
Bezug
Reelle Lösungen & Ungleichunge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:46 Sa 19.04.2014
Autor: Sax

Hi Steffi,

> somit hast du also vier Fälle

$ [mm] n+1\le 2^n [/mm] $

Gruß Sax.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de