www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Satz von Picard-Lindelöf
Satz von Picard-Lindelöf < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Satz von Picard-Lindelöf: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:13 Sa 08.05.2021
Autor: teskiro

Guten Morgen miteinander^^

Wir behandeln zurzeit den Satz von Picard-Lindelöf.
Der Satz in unserem Skript lautet so:


Satz I :  Existenz- und Eindeutigkeitssatz von Picard-Lindelöf (Skript)
Link: https://www.math.uni-tuebingen.de/de/forschung/maphy/lehre/ss-2021/funktionen/dateien/mfph3-diff-kopie.pdf
Seite 73

Sei $G [mm] \subseteq \mathbb{R}^{n}$ [/mm] ein Gebiet, $f: G [mm] \rightarrow \mathbb{R}^{n}$ [/mm] ein stetig differenzierbares Vektorfeld und [mm] $x_{0} \in [/mm] G$.

Dann existiert ein [mm] $\delta [/mm] > 0$, so dass es genau eine stetig differenzierbare Abbildung $x: (- [mm] \delta [/mm] , [mm] \delta) \rightarrow [/mm] G$ gibt, die Lösung von [mm] $\dot{x} [/mm] = f(x)$ zum Anfangswert [mm] $x_{0}$ [/mm] ist,

[mm] $\dot{x} [/mm] = f(x(t))$,
$x(0) = [mm] x_{0}$. [/mm]


Solche Sätze schaut man üblicherweise auch im Internet nach und ich sehe von diesem Satz immer unterschiedliche Versionen. Ich schreibe mal ein paar auf:




Satz II : Satz von Picard-Lindelöf (Mathepedia)
Link: https://mathepedia.de/Satz_von_Picard-Lindeloef.html

Sei $G [mm] \subset \mathbb{R} \times \mathbb{R}^{n}$ [/mm] offen, $f: G [mm] \rightarrow \mathbb{R}^{n}$ [/mm] eine stetige Funktion, die lokal einer Lipschitzbedingung genügt.

Dann existiert für alle $(a, c) [mm] \in [/mm] G$ ein [mm] $\varepsilon [/mm] > 0$, so dass [mm] $\varphi:[a [/mm] - [mm] \varepsilon, [/mm] a + [mm] \varepsilon [/mm] ] [mm] \rightarrow \mathbb{R}^{n}$ [/mm] die eindeutige Lösung des Anfangswertproblems $y' = f(x,y)$ mit [mm] $\varphi(a) [/mm] = c$ ist.





Satz III :   Lokale Version des Satzes von Picard-Lindelöf (Wikipedia)
Link: https://de.wikipedia.org/wiki/Satz_von_Picard-Lindel%C3%B6f


Sei $E$ ein Banachraum, $G [mm] \subset \mathbb{R} \times [/mm] E$, [mm] $y_{0} \in [/mm] E$, $R > 0$ mit $[a, b] [mm] \times \overline{B}(y_{0}, [/mm] R) [mm] \subset [/mm] G$ und $f = f(x, y): G [mm] \rightarrow [/mm] E$ stetig und lokal Lipschitz-stetig in der zweiten Variablen.

Hierin bezeichnet $ [mm] \overline{B}(y_{0}, [/mm] R) := [mm] \{ z \in E\; \vert \; \vert z - y_{0} \vert \vert \le R \}$ [/mm] die abgeschlossene Kugel um [mm] $y_{0}$ [/mm] mit Radius $R$.

Ist $M:= max [mm] \{ \vert \vert f(x, y)\; \vert \; (x,y) \in [a, b] \times \overline{B}(y_{0}, R) \}$ [/mm] und [mm] $\alpha [/mm] := min [mm] \left \{ b - a, \frac{R}{M} \right \}$ [/mm] dann existiert genau eine Lösung des Anfangswertproblems $y' = f(x,y)$, $y(a) = [mm] y_{0}$ [/mm] auf dem Intervall $[a, a + [mm] \alpha]$; [/mm] sie hat Werte in $ [mm] \overline{B}(y_{0}, [/mm] R)$.




Satz IV :   Globale Version des Satzes von Picard-Lindelöf (Wikipedia)
Link: https://de.wikipedia.org/wiki/Satz_von_Picard-Lindel%C3%B6f


Es sei $E$ ein Banachraum und $f:[a, b] [mm] \times [/mm] E [mm] \rightarrow [/mm] E$ eine stetige Funktion, die eine globale Lipschitz-Bedingung bezüglich der zweiten Variablen erfüllt. Dann gibt es zu jedem [mm] $y_{0} \in [/mm] E$ eine globale Lösung $y:[a, b] [mm] \rightarrow [/mm] R$ des Anfangswertproblems $y' = [mm] f(\cdot, [/mm] y)$, $y(a) = [mm] y_{0}$. [/mm]

Es gibt keine weiteren (lokalen) Lösungen.



Satz V :   Picard-Lindelöf, quantitative Version (Wikipedia)
Link: https://www.uibk.ac.at/mathematik/personal/hell/pdfs/skripten/analysis3ws17hell.pdf
Seite 14

Es seien [mm] $(t_{0}, x_{0}) \in \mathbb{R} \times \mathbb{R}^{d}$ [/mm] und $a, r > 0$, soweie [mm] $Z_{a, r} [/mm] := [mm] [t_{0} [/mm] - a, [mm] t_{0} [/mm] + a] [mm] \times \overline{B_{r}(x_{0})}$. [/mm]

Weiteres sei $f: [mm] Z_{a, r} \rightarrow \mathbb{R}^{d}$ [/mm] stetig und global Lipschitz-stetigin der zweiten Komponente.

Dann existiert genau eine Lösung [mm] $\mu: [t_{0} [/mm] - [mm] \alpha, t_{0} [/mm] + [mm] \alpha] \rightarrow \mathbb{R}^{d}$ [/mm] von (AWP), wobei [mm] $\alpha [/mm] := min [mm] \{ a, \frac{r}{M} \}$ [/mm]  mit $M:= max [mm] \{ \vert \vert f(t, x) \vert \vert:\; (t, x) \in Z_{a, r} \}$ [/mm] und $r/M := [mm] \infty$, [/mm] falls $M = 0$.


Satz VI :   Picard-Lindelöf, qualitative Version (Wikipedia)
Link: https://www.uibk.ac.at/mathematik/personal/hell/pdfs/skripten/analysis3ws17hell.pdf
Seite 17

Es sei $D [mm] \subset \mathbb{R} \times \mathbb{R}^{d}$ [/mm] offen und $f: D [mm] \rightarrow \mathbb{R}^{d}$ [/mm] stetig, sowie lokal Lipschitz-stetig in der zweiten Komponenten.

Dann hat für alle [mm] $(t_{0}, x_{0}) \in [/mm] D$ das AWP eine eindeutige Lösung lokale Lösung, d.h. es gibt ein [mm] $\alpha [/mm] > 0$, so dass AWP auf [mm] $[t_{0} [/mm] - [mm] \alpha, t_{0} [/mm] + [mm] \alpha]$ [/mm] genau eine Lösung besitzt.


Ich habe dazu ein paar Fragen, weil mich die ganzen unterschiedlich formulierten Sätze extrem irritieren und ich nicht weiß, ob alle das selbe aussagen oder nicht.


1. Frage:
________

Es gibt ja ein lokale und eine globale Version des Satzes von Picard Lindelöf.
In meinem Skript haben wir nur eine Version und ich kann nicht sagen, ob das die lokale oder globale Version ist, oder die quantitative oder qualitative. Welche Version ist das?


2. Frage
_______

Was genau ist der Unterschied zwischen Satz I und Satz II?
Wenn ich Satz I und Satz II im selben Stil aufschreibe, dann haben wir:


Satz I:

Sei $G [mm] \subseteq \mathbb{R}^{n}$ [/mm] ein Gebiet, $f: G [mm] \rightarrow \mathbb{R}^{n}$ [/mm] eine Funktion, die stetig differenzierbar ist. Dann existiert für alle $(0, [mm] y_{0}) \in [/mm] G$ ein [mm] $\varepsilon [/mm] > 0$, so dass es genau eine stetig diffbare Abbildung [mm] $\varphi:[0 [/mm] - [mm] \varepsilon, [/mm] 0 + [mm] \varepsilon [/mm] ] [mm] \rightarrow \mathbb{R}^{n}$, [/mm] die Lösung des Anfangswertproblems $y' = f(y)$ mit [mm] $\varphi(0) [/mm] = [mm] y_{0}$ [/mm] ist.

Satz II:

Sei $G [mm] \subset \mathbb{R} \times \mathbb{R}^{n}$ [/mm] offen, $f: G [mm] \rightarrow \mathbb{R}^{n}$ [/mm] eine stetige Funktion, die lokal einer Lipschitzbedingung genügt. Dann existiert für alle [mm] $(x_{0}, y_{0}) \in [/mm] G$ ein [mm] $\varepsilon [/mm] > 0$, so dass es genau eine Abbildung [mm] $\varphi:[x_{0} [/mm] - [mm] \varepsilon, x_{0} [/mm] + [mm] \varepsilon [/mm] ] [mm] \rightarrow \mathbb{R}^{n}$, [/mm] die Lösung des Anfangswertproblems $y' = f(x,y)$ mit [mm] $\varphi(x_{0}) [/mm] = [mm] y_{0}$ [/mm] ist.



Das heißt, Satz I ist der Satz von Picard-Lindelöf für autonome DGL- Systeme erster Ordnung, oder? Und Satz II ist eine Verallgemeinerung, d.h. er ist der Satz von Picard-Lindelöf für beliebige DGL- Systeme erster Ordnung.



3. Frage
_______


Also, Satz II ist nur eine Verallgemeinerung von Satz I.
Aber Satz III sieht schon deutlich komplizierter aus.

Sagt Satz III bzw. Satz IV das selbe aus wie Satz II? Also Satz III bzw. Satz IV  ist die "lokale" bzw. "globale" Version des Satzes von Picard-Lindelöf. Und was ist Satz II? Ist es auch die globale oder nur lokale Version des Satzes?

Ich versuche eine Verbindung zwischen Satz III bzw. Satz IV und Satz II herzustellen, aber die sind für mich einfach komplett unterschiedlich formuliert.

Kann mir da jemand Klarheit verschaffen? Ich blicke überhaupt nicht durch....


Satz V und VI lasse ich erstmal aus. Mir ist erstmal wichtig, dass ich die ersten 4 Sätze im Einklang bringe.

Bedanke mich für jede Hilfe, die kommt.
Schönen Tag noch

        
Bezug
Satz von Picard-Lindelöf: Antwort
Status: (Antwort) fertig Status 
Datum: 21:24 Sa 15.05.2021
Autor: meili

Hallo teskiro,

> Guten Morgen miteinander^^
>  
> Wir behandeln zurzeit den Satz von Picard-Lindelöf.
> Der Satz in unserem Skript lautet so:
>  
>
> Satz I :  Existenz- und Eindeutigkeitssatz von
> Picard-Lindelöf (Skript)
>  Link:
> https://www.math.uni-tuebingen.de/de/forschung/maphy/lehre/ss-2021/funktionen/dateien/mfph3-diff-kopie.pdf
>  Seite 73
>  
> Sei [mm]G \subseteq \mathbb{R}^{n}[/mm] ein Gebiet, [mm]f: G \rightarrow \mathbb{R}^{n}[/mm]
> ein stetig differenzierbares Vektorfeld und [mm]x_{0} \in G[/mm].
>  
> Dann existiert ein [mm]\delta > 0[/mm], so dass es genau eine stetig
> differenzierbare Abbildung [mm]x: (- \delta , \delta) \rightarrow G[/mm]
> gibt, die Lösung von [mm]\dot{x} = f(x)[/mm] zum Anfangswert [mm]x_{0}[/mm]
> ist,
>  
> [mm]\dot{x} = f(x(t))[/mm],
> [mm]x(0) = x_{0}[/mm].
>  
>
> Solche Sätze schaut man üblicherweise auch im Internet
> nach und ich sehe von diesem Satz immer unterschiedliche
> Versionen. Ich schreibe mal ein paar auf:
>  
>
>
>
> Satz II : Satz von Picard-Lindelöf (Mathepedia)
>  Link:
> https://mathepedia.de/Satz_von_Picard-Lindeloef.html
>  
> Sei [mm]G \subset \mathbb{R} \times \mathbb{R}^{n}[/mm] offen, [mm]f: G \rightarrow \mathbb{R}^{n}[/mm]
> eine stetige Funktion, die lokal einer Lipschitzbedingung
> genügt.
>  
> Dann existiert für alle [mm](a, c) \in G[/mm] ein [mm]\varepsilon > 0[/mm],
> so dass [mm]\varphi:[a - \varepsilon, a + \varepsilon ] \rightarrow \mathbb{R}^{n}[/mm]
> die eindeutige Lösung des Anfangswertproblems [mm]y' = f(x,y)[/mm]
> mit [mm]\varphi(a) = c[/mm] ist.
>  
>
>
>
>
> Satz III :  Lokale Version des Satzes von Picard-Lindelöf
> (Wikipedia)
>  Link:
> https://de.wikipedia.org/wiki/Satz_von_Picard-Lindel%C3%B6f
>  
>
> Sei [mm]E[/mm] ein Banachraum, [mm]G \subset \mathbb{R} \times E[/mm], [mm]y_{0} \in E[/mm],
> [mm]R > 0[/mm] mit [mm][a, b] \times \overline{B}(y_{0}, R) \subset G[/mm]
> und [mm]f = f(x, y): G \rightarrow E[/mm] stetig und lokal
> Lipschitz-stetig in der zweiten Variablen.
>  
> Hierin bezeichnet [mm]\overline{B}(y_{0}, R) := \{ z \in E\; \vert \; \vert z - y_{0} \vert \vert \le R \}[/mm]
> die abgeschlossene Kugel um [mm]y_{0}[/mm] mit Radius [mm]R[/mm].
>  
> Ist [mm]M:= max \{ \vert \vert f(x, y)\; \vert \; (x,y) \in [a, b] \times \overline{B}(y_{0}, R) \}[/mm]
> und [mm]\alpha := min \left \{ b - a, \frac{R}{M} \right \}[/mm]
> dann existiert genau eine Lösung des Anfangswertproblems
> [mm]y' = f(x,y)[/mm], [mm]y(a) = y_{0}[/mm] auf dem Intervall [mm][a, a + \alpha][/mm];
> sie hat Werte in [mm]\overline{B}(y_{0}, R)[/mm].
>  
>
>
>
> Satz IV :  Globale Version des Satzes von Picard-Lindelöf
> (Wikipedia)
>  Link:
> https://de.wikipedia.org/wiki/Satz_von_Picard-Lindel%C3%B6f
>  
>
> Es sei [mm]E[/mm] ein Banachraum und [mm]f:[a, b] \times E \rightarrow E[/mm]
> eine stetige Funktion, die eine globale Lipschitz-Bedingung
> bezüglich der zweiten Variablen erfüllt. Dann gibt es zu
> jedem [mm]y_{0} \in E[/mm] eine globale Lösung [mm]y:[a, b] \rightarrow R[/mm]
> des Anfangswertproblems [mm]y' = f(\cdot, y)[/mm], [mm]y(a) = y_{0}[/mm].
>  
> Es gibt keine weiteren (lokalen) Lösungen.
>  
>
>
> Satz V :  Picard-Lindelöf, quantitative Version
> (Wikipedia)
>  Link:
> https://www.uibk.ac.at/mathematik/personal/hell/pdfs/skripten/analysis3ws17hell.pdf
>  Seite 14
>  
> Es seien [mm](t_{0}, x_{0}) \in \mathbb{R} \times \mathbb{R}^{d}[/mm]
> und [mm]a, r > 0[/mm], soweie [mm]Z_{a, r} := [t_{0} - a, t_{0} + a] \times \overline{B_{r}(x_{0})}[/mm].
>  
> Weiteres sei [mm]f: Z_{a, r} \rightarrow \mathbb{R}^{d}[/mm] stetig
> und global Lipschitz-stetigin der zweiten Komponente.
>  
> Dann existiert genau eine Lösung [mm]\mu: [t_{0} - \alpha, t_{0} + \alpha] \rightarrow \mathbb{R}^{d}[/mm]
> von (AWP), wobei [mm]\alpha := min \{ a, \frac{r}{M} \}[/mm]  mit
> [mm]M:= max \{ \vert \vert f(t, x) \vert \vert:\; (t, x) \in Z_{a, r} \}[/mm]
> und [mm]r/M := \infty[/mm], falls [mm]M = 0[/mm].
>
>
> Satz VI :  Picard-Lindelöf, qualitative Version
> (Wikipedia)
>  Link:
> https://www.uibk.ac.at/mathematik/personal/hell/pdfs/skripten/analysis3ws17hell.pdf
>  Seite 17
>  
> Es sei [mm]D \subset \mathbb{R} \times \mathbb{R}^{d}[/mm] offen und
> [mm]f: D \rightarrow \mathbb{R}^{d}[/mm] stetig, sowie lokal
> Lipschitz-stetig in der zweiten Komponenten.
>  
> Dann hat für alle [mm](t_{0}, x_{0}) \in D[/mm] das AWP eine
> eindeutige Lösung lokale Lösung, d.h. es gibt ein [mm]\alpha > 0[/mm],
> so dass AWP auf [mm][t_{0} - \alpha, t_{0} + \alpha][/mm] genau eine
> Lösung besitzt.
>  
>
> Ich habe dazu ein paar Fragen, weil mich die ganzen
> unterschiedlich formulierten Sätze extrem irritieren und
> ich nicht weiß, ob alle das selbe aussagen oder nicht.
>  
>
> 1. Frage:
>  ________
>  
> Es gibt ja eine lokale und eine globale Version des Satzes
> von Picard Lindelöf.
>  In meinem Skript haben wir nur eine Version und ich kann
> nicht sagen, ob das die lokale oder globale Version ist,
> oder die quantitative oder qualitative. Welche Version ist
> das?

Es ist eine lokale, qualitative Version

>  
>
> 2. Frage
>  _______
>  
> Was genau ist der Unterschied zwischen Satz I und Satz II?
>  Wenn ich Satz I und Satz II im selben Stil aufschreibe,
> dann haben wir:

In Satz I ist f eine stetig differenzierbare Funktion, in Satz II ist f eine
stetige Funktion, die lokal einer Lipschitzbedingung genügt. Stetig differenzierbar
ist die stärkere Bedingung aus der eine lokale Lipschitzbedingung folgt, aber für den Satz von Picard-Lindelöf genügt
f ist eine stetige Funktion mit lokaler Lipschitzbedingung.
Der andere Unterschied zwischen Satz I und Satz II ist, bei Satz I wird ein
Anfangswert an der Stelle 0 betrachtet, bei Satz II an einer beliebigen Stelle a.

>  
>
> Satz I:
>
> Sei [mm]G \subseteq \mathbb{R}^{n}[/mm] ein Gebiet, [mm]f: G \rightarrow \mathbb{R}^{n}[/mm]
> eine Funktion, die stetig differenzierbar ist. Dann
> existiert für alle [mm](0, y_{0}) \in G[/mm] ein [mm]\varepsilon > 0[/mm],
> so dass es genau eine stetig diffbare Abbildung [mm]\varphi:[0 - \varepsilon, 0 + \varepsilon ] \rightarrow \mathbb{R}^{n}[/mm],
> die Lösung des Anfangswertproblems [mm]y' = f(y)[/mm] mit
> [mm]\varphi(0) = y_{0}[/mm] ist.
>  
> Satz II:
>
> Sei [mm]G \subset \mathbb{R} \times \mathbb{R}^{n}[/mm] offen, [mm]f: G \rightarrow \mathbb{R}^{n}[/mm]
> eine stetige Funktion, die lokal einer Lipschitzbedingung
> genügt. Dann existiert für alle [mm](x_{0}, y_{0}) \in G[/mm] ein
> [mm]\varepsilon > 0[/mm], so dass es genau eine Abbildung
> [mm]\varphi:[x_{0} - \varepsilon, x_{0} + \varepsilon ] \rightarrow \mathbb{R}^{n}[/mm],
> die Lösung des Anfangswertproblems [mm]y' = f(x,y)[/mm] mit
> [mm]\varphi(x_{0}) = y_{0}[/mm] ist.
>  
>
>
> Das heißt, Satz I ist der Satz von Picard-Lindelöf für
> autonome DGL- Systeme erster Ordnung, oder? Und Satz II ist
> eine Verallgemeinerung, d.h. er ist der Satz von
> Picard-Lindelöf für beliebige DGL- Systeme erster
> Ordnung.
>  
>
>
> 3. Frage
>  _______
>  
>
> Also, Satz II ist nur eine Verallgemeinerung von Satz I.
>  Aber Satz III sieht schon deutlich komplizierter aus.

Was Satz III komplizierter macht, ist, dass statt [mm] \mathbb{R}^{n}[/mm] als Verallgemeinerung ein Banachraum genommen wird.

>  
> Sagt Satz III bzw. Satz IV das selbe aus wie Satz II? Also
> Satz III bzw. Satz IV  ist die "lokale" bzw. "globale"
> Version des Satzes von Picard-Lindelöf. Und was ist Satz
> II? Ist es auch die globale oder nur lokale Version des
> Satzes?

Satz I, Satz II, Satz III und Satz VI sind lokale Versionen.

>  
> Ich versuche eine Verbindung zwischen Satz III bzw. Satz IV
> und Satz II herzustellen, aber die sind für mich einfach
> komplett unterschiedlich formuliert.
>  
> Kann mir da jemand Klarheit verschaffen? Ich blicke
> überhaupt nicht durch....
>  
>
> Satz V und VI lasse ich erstmal aus. Mir ist erstmal
> wichtig, dass ich die ersten 4 Sätze im Einklang bringe.
>  
> Bedanke mich für jede Hilfe, die kommt.
>  Schönen Tag noch

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de