www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Schnitt zweier Kreise
Schnitt zweier Kreise < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schnitt zweier Kreise: Frage zu radius berechnung
Status: (Frage) beantwortet Status 
Datum: 15:46 Mi 26.05.2010
Autor: diamOnd24

Aufgabe
Berechne die Schnittpunkte der Kreise k1 und k2 mit den Mittelpunkten M1, M2 und r1 bzw. r2
k1: M(-3/-4) P(5-3) ein element des Kreises
k2: geht durch A (-2/0) und B(4/0), r2 = 5 , M2 liegt im 1 Quadranten

Hallo also

ich habe jetzt mal die 2 kreisgleichung berechnet, aber ich bin mir nicht 100% sicher also schaut sie euch mal an :

m2: [mm] \bruch{1}{2} [/mm] *( A+B) = [mm] \bruch{1}{2}*\vektor{2 \\ 0} [/mm]  = [mm] \vektor{1 \\ 0} [/mm]
also ergibt sich
k2: [mm] (x-1)^2+ y^2 [/mm] = 25

stimmt das ?

und bei k1 haben wir ja die kreisgleichung gegebn
k1: [mm] (x+3)^3 [/mm] + [mm] (y+4)^2 [/mm] = r1

und ich habe mir gedacht ich berechen r1 mit dem Betrag aus Punkt und Vektor also
[mm] \overrightarrow{MP} [/mm] = |P-M| = [mm] \vektor{-8 \\ -1} [/mm] = [mm] \wurzel{8^2 + 1^2} [/mm] = [mm] \wurzel{65} [/mm]

also wäre der radius [mm] \wurzel{65} [/mm]

ich habe das ganze auch mit geogebra gezeichnet und die beiden Kreise würden sich schneiden jedoch komm ich laut lösungsbuch nicht auf die richtigen scnittpunkt nänlich (4/0) und (-4/4) deshlab muss wohl ein fehler drin sein:(

danke für eure hilfe
lg maria

        
Bezug
Schnitt zweier Kreise: Korrektur
Status: (Antwort) fertig Status 
Datum: 15:52 Mi 26.05.2010
Autor: Roadrunner

Hallo Maria!


Ich kann nur einen Fehler entdecken: wie kommst Du auf [mm] $y_m [/mm] \ = \ 0$ beim Kreis [mm] $k_2$ [/mm] ?
Hier erhalte ich [mm] $y_m [/mm] \ =  \ +4$ .


Gruß vom
Roadrunner


Bezug
                
Bezug
Schnitt zweier Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:04 Mi 26.05.2010
Autor: diamOnd24

warum 4 ?
das versteh ich jetzt nicht ? bei k1 ist ja x und y vorgegebn mit -3 und -4 ?


Bezug
                        
Bezug
Schnitt zweier Kreise: verschrieben
Status: (Antwort) fertig Status 
Datum: 16:07 Mi 26.05.2010
Autor: Roadrunner

Hallo Maria!


Sorry, ich meinte den Kreis [mm] $k_{\red{2}}$ [/mm] .


Gruß vom
Roadrunner


Bezug
                                
Bezug
Schnitt zweier Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Mi 26.05.2010
Autor: diamOnd24

ok aber wie kommt man auf 4 ?
??
wenn man
  [mm] \bruch{1}{2} [/mm]  *( A+B) = [mm] \bruch{1}{2} [/mm] * [mm] (\vektor{-2 \\ 0} [/mm] + [mm] \vektor{4 \\ 0}) [/mm]

bleibt doch bei y = 0 oder ?

Bezug
                                        
Bezug
Schnitt zweier Kreise: falscher Ansatz
Status: (Antwort) fertig Status 
Datum: 16:24 Mi 26.05.2010
Autor: Roadrunner

Hallo Maria!


Du kannst nicht davon ausgehen, dass der Kreismittelpunkt auch der Mittelpunkt der Strecke [mm] $\overline{AB}$ [/mm] ist. Dies gilt nur, wenn der Abstand dieser beiden Punkte exakt $2*r_$ beträgt (was hier nicht der Fall ist).


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Schnitt zweier Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 26.05.2010
Autor: diamOnd24

ok also berechne ich den Mittelpunkt ganz anders oder ?


Bezug
                                                        
Bezug
Schnitt zweier Kreise: in Kreisgleichung einsetzen
Status: (Antwort) fertig Status 
Datum: 16:28 Mi 26.05.2010
Autor: Roadrunner

Hallo Maria!


So sieht's aus. Setze die beiden gegebenen Punktkoordinaten in die allgemeine Kreisgleichung ein.
Damit erhältst Du ein Gleichungssystem aus zwei Gleichungen mit zwei Unbekannten.


Gruß vom
Roadrunner


Bezug
                                                                
Bezug
Schnitt zweier Kreise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Mi 26.05.2010
Autor: diamOnd24

ok eine letzte und sicherlich dumme frage aber stimmt das

I. [mm] (x+2)^2 [/mm] + [mm] (y-0)^2 [/mm] =25
II. [mm] (x-4)^2 [/mm] + [mm] (y-0)^2 [/mm] = 25

oder nicht ? weil irgendwie komm ich nicht weiter :((

Bezug
                                                                        
Bezug
Schnitt zweier Kreise: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mi 26.05.2010
Autor: Steffi21

Hallo

laut allgemeiner Kreisgleichung hast du

[mm] (-2+x_M)^{2}+(y_M)^{2}=25 [/mm]

[mm] (4+x_M)^{2}+(y_M)^{2}=25 [/mm]

mit dem Mittelpunkt [mm] M(x_M;y_M) [/mm]

du bekommst 2 mögliche Kreise, beachte Hinweis zur Lage des Mittelpunktes von Kreis 2

Steffi



Bezug
                                                                        
Bezug
Schnitt zweier Kreise: weitermachen
Status: (Antwort) fertig Status 
Datum: 16:55 Mi 26.05.2010
Autor: Roadrunner

Hallo Maria!


Multipliziere die Klammern aus und ziehe anschließend die 2. Gleichung von der 1. ab (oder auch umgekehrt ;-) ).


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de