www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Skalarprodukt
Skalarprodukt < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:47 Do 10.05.2007
Autor: itse

Aufgabe
2.Es sein

[mm] $\vec [/mm] a$ = [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\vec [/mm] b$ = [mm] $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$, $\vec [/mm] c$ = [mm] $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ [/mm]

a) Bestimmen Sie die Beträge der Vektoren [mm] $\vec [/mm] a$, [mm] $\vec [/mm] b$ und [mm] $\vec [/mm] c$.
b) Bestimmen Sie die Skalarprodukte [mm] $\vec [/mm] a$ * [mm] $\vec [/mm] b$, [mm] $\vec [/mm] a$ * [mm] $\vec [/mm] c$ und [mm] $\vec [/mm] b$ * [mm] $\vec [/mm] c$.
c) Bestimmen Sie die Winkel zwischen den Vektoren [mm] $\vec [/mm] a$, [mm] $\vec [/mm] b$ und [mm] $\vec [/mm] c$.

3. Geben Sie drei zum Vektor [mm] $\vec [/mm] v$ = [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ [/mm] senkrechte Vektoren an.

Hallo zusammen,

hier meine Lösung, wenn es sich jemand anschauen könnte und sagen ob es so passt? Vielen Dank

2. a) [mm] $\vec [/mm] |a|$ = [mm] $\wurzel{2^2+0^2+1^2} [/mm] = [mm] \wurzel{5}$ [/mm]
      [mm] $\vec [/mm] |b|$ = [mm] $\wurzel{4^2+(-3)^2+1^2} [/mm] = [mm] \wurzel{26}$ [/mm]
      [mm] $\vec [/mm] |c|$ = [mm] $\wurzel{(-1)^2+1^2+(-2)^2} [/mm] = [mm] \wurzel{6}$ [/mm]


b) [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ [/mm] * [mm] $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$ [/mm] = 2*4+0*(-3)+1*1 = 9

   [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ [/mm] * [mm] $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ [/mm] = 2*(-1)+0*1+1*(-2) = -4

   [mm] $\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}$ [/mm] * [mm] $\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ [/mm] = 4*(-1)+(-3)*1+1*(-2) = -9


c) [mm] $\cos \gamma$ [/mm] = [mm] $\bruch{\vec a * \vec b}{\vec |a| * \vec |b|}$ [/mm] = 37,9°

   [mm] $\cos \gamma$ [/mm] = [mm] $\bruch{\vec a * \vec c}{\vec |a| * \vec |c|}$ [/mm] = 136,9°

   [mm] $\cos \gamma$ [/mm] = [mm] $\bruch{\vec b * \vec c}{\vec |b| * \vec |c|}$ [/mm] = 136,1°



3. Dazu muss das Skalarprodukt von [mm] $\vec [/mm] v$ = [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ [/mm] * [mm] $\vec [/mm] x$ = [mm] $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ [/mm] = 0 sein, da [mm] $\cos-|$ [/mm] von 0 = 90° ist.

1 * 1 + 2 * 1 -2 * 1,5 = 0
1 * 2 + 2 * 2 -2 * 3   = 0
1*(-2) + 2 * (-2) -2 * (-3) = 0


Die Vektoren [mm] $\vec x_1$ [/mm] = [mm] $\begin{pmatrix} 1 \\ 1 \\ 1,5 \end{pmatrix}$, $\vec x_2$ [/mm] = [mm] $\begin{pmatrix} 2 \\ 2 \\ 3 \end{pmatrix}$ [/mm] und [mm] $\vec x_3$ [/mm] = [mm] $\begin{pmatrix} -2 \\ -2 \\ -3 \end{pmatrix}$ [/mm] sind senkrecht zum Vektor [mm] $\vec [/mm] v$ = [mm] $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$. [/mm]

        
Bezug
Skalarprodukt: (Teil-)Korrektur
Status: (Antwort) fertig Status 
Datum: 20:01 Do 10.05.2007
Autor: Loddar

Hallo itse!


> 2. a) [mm]\vec |a|[/mm] = [mm]\wurzel{2^2+0^2+1^2} = \wurzel{5}[/mm]
>        
> [mm]\vec |b|[/mm] = [mm]\wurzel{4^2+(-3)^2+1^2} = \wurzel{26}[/mm]
>        
> [mm]\vec |c|[/mm] = [mm]\wurzel{(-1)^2+1^2+(-2)^2} = \wurzel{6}[/mm]

[ok] Alle 3 richtig!


> b) [mm]\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}[/mm] *  [mm]\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}[/mm] = 2*4+0*(-3)+1*1  = 9
>  
> [mm]\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}[/mm] * [mm]\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}[/mm] = 2*(-1)+0*1+1*(-2) = -4
>  
> [mm]\begin{pmatrix} 4 \\ -3 \\ 1 \end{pmatrix}[/mm] * [mm]\begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}[/mm] = 4*(-1)+(-3)*1+1*(-2) = -9

[ok] Alle 3 richtig!


> c) [mm]\cos \gamma[/mm] = [mm]\bruch{\vec a * \vec b}{\vec |a| * \vec |b|}[/mm]  = 37,9°
>  
> [mm]\cos \gamma[/mm] = [mm]\bruch{\vec a * \vec c}{\vec |a| * \vec |c|}[/mm] = 136,9°
>  
> [mm]\cos \gamma[/mm] = [mm]\bruch{\vec b * \vec c}{\vec |b| * \vec |c|}[/mm] = 136,1°

[keineahnung] Kann ich grad ohne Taschenrechner nicht kontrollieren ...


> 3. Dazu muss das Skalarprodukt von [mm]\vec v[/mm] = [mm]\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}[/mm]
> * [mm]\vec x[/mm] = [mm]\begin{pmatrix} x \\ y \\ z \end{pmatrix}[/mm] = 0
> sein, da [mm]\cos-|[/mm] von 0 = 90° ist.

[ok] Richtig! Aber es gilt natürlich andersrum: [mm] $\cos(90°) [/mm] \ = \ 0$ !


> 1 * 1 + 2 * 1 -2 * 1,5 = 0
> 1 * 2 + 2 * 2 -2 * 3   = 0
> 1*(-2) + 2 * (-2) -2 * (-3) = 0

[notok] Das stimmt leider nicht, da Du hier jeweils den falschen Wert für $y \ = \ [mm] x_2$ [/mm] einsetzt. Dieser lautet doch [mm] $\vec{v} [/mm] \ = \ [mm] \vektor{2\\ \red{0} \\ 1}$ [/mm] !

Es muss also jeweils gelten:

[mm] $\vektor{2\\ \red{0} \\ 1}*\vektor{x\\ y \\ z} [/mm] \ = \ [mm] 2*x+\red{0}*y+1*z [/mm] \ = \ 2x+z \ = \ 0$


Gruß
Loddar


Bezug
                
Bezug
Skalarprodukt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:07 Do 10.05.2007
Autor: itse

hallo,

hab beim kopieren der vektoren einen fehler gemacht. bei aufgabe 3 lautet der vektor [mm] $\vec [/mm] v$ = $ [mm] \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} [/mm] $,
dann müsste meine Lösung doch stimmen?

Bezug
                        
Bezug
Skalarprodukt: Yep!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Do 10.05.2007
Autor: Loddar

Hallo itse!


Dann stimmt's ... [ok]


Gruß
Loddar


Bezug
        
Bezug
Skalarprodukt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Do 10.05.2007
Autor: Steffi21

Hallo,

habe gerade deine winkel in c) eingetippt, alle korrekt

steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de