www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stationäre Punkte finden
Stationäre Punkte finden < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stationäre Punkte finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:40 So 31.01.2016
Autor: Mathics

Aufgabe
Betrachten Sie folgendes Maximierungsproblem:

[mm] \max_{x,y,z} [/mm] f = max [mm] x^{2} [/mm] + yx + z

u.d.N. x + y = 1
[mm] y^{2} [/mm] + [mm] z^{2} [/mm] = 2

Berechnen Sie die stationären Punkte der Lagrangefunktion.

Hallo,

Die Lagrangefunktion lautet:

L = [mm] x^{2} [/mm] + yx+ z - [mm] \lambda(x [/mm] + y - 1) - [mm] \mu(y^{2} [/mm] + [mm] z^{2} [/mm] - 2)

Die ersten Ableitungen:

[mm] L_{x} [/mm] = 2x + y - [mm] \lambda [/mm] = 0
[mm] L_{y} [/mm] = x - [mm] \lambda [/mm] - [mm] 2*\mu*y [/mm] = 0
[mm] L_{z} [/mm] = 1 - [mm] 2*\mu*z [/mm] = 0
[mm] L_{\lambda} [/mm] = -x - y + 1 = 0
[mm] L_{\mu} [/mm] = [mm] -y^2 [/mm] - [mm] z^2 [/mm] + 2 = 0


Gibt es hier eine simple Strategie, nach der man die stationären Punkte finden kann? Bei einer Nebenbedingung habe ich bisher immer [mm] L_{x} [/mm] und [mm] L_{y} [/mm] nach
[mm] \lambda [/mm] aufgelöst, gleichgesetzt und dann mithilfe von [mm] L_{\lambda} [/mm] x oder y herausbekommen. Aber bei zwei Nebenbedingungen und 3 Variablen erscheint mir das hier doch etwas komplizierter...


LG
Mathics

        
Bezug
Stationäre Punkte finden: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 So 31.01.2016
Autor: abakus

5 Gleichungen, 5 Unbekannte - ist doch alles bestens.

Mein Tipp: Beginne damit, die erste und die vierte Gleichung zu addieren.

Bezug
                
Bezug
Stationäre Punkte finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 So 31.01.2016
Autor: Mathics

Danke für den Tipp :)

Ich hab' jetzt mal so gerechnet:

[mm] L_{x} +L_{y}= [/mm] 2x + y - [mm] \lambda [/mm] - x - y + 1 = 0

= x - [mm] \lambda [/mm] + 1 = 0

= x + 1 = [mm] \lambda [/mm]


[mm] L_{y} [/mm] = x - [mm] \lambda [/mm] - [mm] 2*\mu*y [/mm] = 0

= [mm] \bruch{x - \lambda}{y} [/mm] = [mm] 2*\mu [/mm]


[mm] L_{z}= [/mm] 1 - [mm] 2*\mu*z [/mm] = 0

= [mm] \bruch{1}{z} [/mm] = [mm] 2*\mu [/mm]

[mm] L_{y} [/mm] = [mm] L_{z} [/mm]

[mm] \bruch{x -\lambda}{y} [/mm] = [mm] \bruch{1}{z} [/mm]
[mm] \bruch{x - x - 1}{y} [/mm] = [mm] \bruch{1}{z} [/mm]
[mm] \bruch{-1}{y} [/mm] = [mm] \bruch{1}{z} [/mm]
- z = y
z = - y

[mm] L_{\mu} [/mm] = - [mm] y^2 [/mm] - [mm] z^2 [/mm] = 0

= - [mm] y^2 [/mm] - [mm] (-y)^2 [/mm] + 2 = 0
= - [mm] y^2 [/mm] - [mm] y^2 [/mm] + 2 = 0
= [mm] -2y^2 [/mm] = -2
= [mm] y^2 [/mm] = 1
= y = +/- 1

Durch Einsetzen erhält man dann:

(x=0 , y=1 , z=-1 , [mm] \lambda [/mm] = 1 , [mm] \mu [/mm] = - [mm] \bruch{1}{2}) [/mm]

(x=2 , y=-1 , z=1 , [mm] \lambda [/mm] = 3 , [mm] \mu [/mm] = [mm] \bruch{1}{2}) [/mm]


Hätte ich noch etwas einfacher machen können?


LG
Mathics

Bezug
                        
Bezug
Stationäre Punkte finden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Di 02.02.2016
Autor: meili

Hallo Mathics,


[mm] $L_{\lambda}$ [/mm] umformen zu: x = 1-y

Dies einsetzen in [mm] $L_x$ [/mm] gibt: [mm] $\lambda$ [/mm] = 2-y

x und [mm] $\lambda$ [/mm] ersetzen in [mm] $L_y$, [/mm] nach [mm] $\mu$ [/mm] auflösen: [mm] $\mu [/mm] = [mm] -\bruch{1}{2y}$ [/mm]

[mm] $L_z$ [/mm] nach [mm] $\mu$ [/mm] auflösen: [mm] $\mu [/mm] = [mm] \bruch{1}{2z}$ [/mm]

Gleichsetzen ergibt: z = -y

z in [mm] $L_{\mu}$ [/mm] einsetzen und y berechnen.

Dann wieder rückeinsetzen.


Ob es wirklich einfacher ist?

Gruß
meili

Bezug
        
Bezug
Stationäre Punkte finden: Antwort
Status: (Antwort) fertig Status 
Datum: 05:31 Mo 01.02.2016
Autor: fred97

Wirf y doch raus ! Aus x + y = 1  folgt y=1-x

Damit ist [mm] f_0(x,z)=x+z [/mm] zu maximieren nter der NB

  [mm] (x-1)^2+z^2=2. [/mm]

Du wirst sehen: so gehts viel einfacher.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de